Riješite za x
x=-5
Graf
Dijeliti
Kopirano u clipboard
x^{2}+10x+25=0
Koristite binomnu teoremu \left(a+b\right)^{2}=a^{2}+2ab+b^{2} da biste proširili \left(x+5\right)^{2}.
a+b=10 ab=25
Da biste riješili jednadžbu, faktorišite x^{2}+10x+25 koristeći formulu x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). Da biste pronašli a i b, uspostavite sistem koji treba riješiti.
1,25 5,5
Pošto je ab pozitivno, a a b ima isti znak. Pošto je a+b pozitivno, a a b su oba pozitivna. Navedite sve parove cijelih brojeva koji daju proizvod 25.
1+25=26 5+5=10
Izračunajte sumu za svaki par.
a=5 b=5
Rješenje je njihov par koji daje sumu 10.
\left(x+5\right)\left(x+5\right)
Ponovo napišite faktorisani izraz \left(x+a\right)\left(x+b\right) pomoću dobijenih korena.
\left(x+5\right)^{2}
Ponovo napišite kao binomni kvadrat.
x=-5
Da biste došli do rješenja jednadžbe, riješite x+5=0.
x^{2}+10x+25=0
Koristite binomnu teoremu \left(a+b\right)^{2}=a^{2}+2ab+b^{2} da biste proširili \left(x+5\right)^{2}.
a+b=10 ab=1\times 25=25
Da biste riješili jednadžbu, faktorišite lijevu stranu grupisanjem. Prvo, lijevu stranu treba prepisati kao x^{2}+ax+bx+25. Da biste pronašli a i b, uspostavite sistem koji treba riješiti.
1,25 5,5
Pošto je ab pozitivno, a a b ima isti znak. Pošto je a+b pozitivno, a a b su oba pozitivna. Navedite sve parove cijelih brojeva koji daju proizvod 25.
1+25=26 5+5=10
Izračunajte sumu za svaki par.
a=5 b=5
Rješenje je njihov par koji daje sumu 10.
\left(x^{2}+5x\right)+\left(5x+25\right)
Ponovo napišite x^{2}+10x+25 kao \left(x^{2}+5x\right)+\left(5x+25\right).
x\left(x+5\right)+5\left(x+5\right)
Isključite x u prvoj i 5 drugoj grupi.
\left(x+5\right)\left(x+5\right)
Izdvojite obični izraz x+5 koristeći svojstvo distribucije.
\left(x+5\right)^{2}
Ponovo napišite kao binomni kvadrat.
x=-5
Da biste došli do rješenja jednadžbe, riješite x+5=0.
x^{2}+10x+25=0
Koristite binomnu teoremu \left(a+b\right)^{2}=a^{2}+2ab+b^{2} da biste proširili \left(x+5\right)^{2}.
x=\frac{-10±\sqrt{10^{2}-4\times 25}}{2}
Ova jednačina je u standardnom obliku: ax^{2}+bx+c=0. Zamijenite 1 i a, 10 i b, kao i 25 i c u kvadratnoj formuli, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-10±\sqrt{100-4\times 25}}{2}
Izračunajte kvadrat od 10.
x=\frac{-10±\sqrt{100-100}}{2}
Pomnožite -4 i 25.
x=\frac{-10±\sqrt{0}}{2}
Saberite 100 i -100.
x=-\frac{10}{2}
Izračunajte kvadratni korijen od 0.
x=-5
Podijelite -10 sa 2.
\sqrt{\left(x+5\right)^{2}}=\sqrt{0}
Izračunajte kvadratni korijen od obje strane jednačine.
x+5=0 x+5=0
Pojednostavite.
x=-5 x=-5
Oduzmite 5 s obje strane jednačine.
x=-5
Jednačina je riješena. Rješenja su ista.
Primjeri
kvadratna jednacina
{ x } ^ { 2 } - 4 x - 5 = 0
trigonometrija
4 \sin \theta \cos \theta = 2 \sin \theta
Linearna jednačina
y = 3x + 4
Aritmetika
699 * 533
Matrica
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultana jednačina
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferencijacija
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integracija
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Granice
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}