Preskoči na glavni sadržaj
Riješite za x
Tick mark Image
Graf

Slični problemi iz web pretrage

Dijeliti

\left(x+100\right)^{2}=0
Da biste riješili nejednačinu, faktorirajte lijevu stranu. Kvadratni polinom se može faktorirati pomoću transformacije ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), pri čemu x_{1} i x_{2} predstavlјaju rješenja kvadratne jednačine ax^{2}+bx+c=0.
x=\frac{-200±\sqrt{200^{2}-4\times 1\left(-100090000\right)}}{2}
Sve nejednakosti izraza ax^{2}+bx+c=0 mogu se riješiti korištenjem kvadratne formule: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Zamijenite 1 sa a, 200 sa b i -100090000 sa c u kvadratnoj formuli.
x=\frac{-200±200\sqrt{10010}}{2}
Izvršite računanje.
x=100\sqrt{10010}-100 x=-100\sqrt{10010}-100
Riješite jednačinu x=\frac{-200±200\sqrt{10010}}{2} kad je ± pozitivno i kad je ± negativno.
\left(x-\left(100\sqrt{10010}-100\right)\right)\left(x-\left(-100\sqrt{10010}-100\right)\right)<0
Ponovo napišite nejednačinu koristeći dobivena rješenja.
x-\left(100\sqrt{10010}-100\right)>0 x-\left(-100\sqrt{10010}-100\right)<0
Da bi proizvod bio negativan, x-\left(100\sqrt{10010}-100\right) i x-\left(-100\sqrt{10010}-100\right) moraju imati suprotne predznake. Razmotrite slučaj kad je x-\left(100\sqrt{10010}-100\right) pozitivno, a x-\left(-100\sqrt{10010}-100\right) negativno.
x\in \emptyset
Ovo je netačno za svaki x.
x-\left(-100\sqrt{10010}-100\right)>0 x-\left(100\sqrt{10010}-100\right)<0
Razmotrite slučaj kad je x-\left(-100\sqrt{10010}-100\right) pozitivno, a x-\left(100\sqrt{10010}-100\right) negativno.
x\in \left(-100\sqrt{10010}-100,100\sqrt{10010}-100\right)
Rješenje koje zadovoljava obje nejednakosti je x\in \left(-100\sqrt{10010}-100,100\sqrt{10010}-100\right).
x\in \left(-100\sqrt{10010}-100,100\sqrt{10010}-100\right)
Konačno rješenje je unija dobivenih rješenja.