Riješite za a (complex solution)
\left\{\begin{matrix}a=-\frac{-bx-2x+3b-7}{x-1}\text{, }&x\neq 1\\a\in \mathrm{C}\text{, }&b=\frac{9}{2}\text{ and }x=1\end{matrix}\right,
Riješite za b (complex solution)
\left\{\begin{matrix}b=-\frac{ax-2x-a-7}{3-x}\text{, }&x\neq 3\\b\in \mathrm{C}\text{, }&x=3\text{ and }a=\frac{13}{2}\end{matrix}\right,
Riješite za a
\left\{\begin{matrix}a=-\frac{-bx-2x+3b-7}{x-1}\text{, }&x\neq 1\\a\in \mathrm{R}\text{, }&b=\frac{9}{2}\text{ and }x=1\end{matrix}\right,
Riješite za b
\left\{\begin{matrix}b=-\frac{ax-2x-a-7}{3-x}\text{, }&x\neq 3\\b\in \mathrm{R}\text{, }&x=3\text{ and }a=\frac{13}{2}\end{matrix}\right,
Graf
Dijeliti
Kopirano u clipboard
ax-3x+3b-4=\left(b-1\right)x+a+3
Koristite distributivno svojstvo da biste pomnožili a-3 sa x.
ax-3x+3b-4=bx-x+a+3
Koristite distributivno svojstvo da biste pomnožili b-1 sa x.
ax-3x+3b-4-a=bx-x+3
Oduzmite a s obje strane.
ax+3b-4-a=bx-x+3+3x
Dodajte 3x na obje strane.
ax+3b-4-a=bx+2x+3
Kombinirajte -x i 3x da biste dobili 2x.
ax-4-a=bx+2x+3-3b
Oduzmite 3b s obje strane.
ax-a=bx+2x+3-3b+4
Dodajte 4 na obje strane.
ax-a=bx+2x+7-3b
Saberite 3 i 4 da biste dobili 7.
\left(x-1\right)a=bx+2x+7-3b
Kombinirajte sve termine koji sadrže a.
\left(x-1\right)a=bx+2x-3b+7
Jednačina je u standardnom obliku.
\frac{\left(x-1\right)a}{x-1}=\frac{bx+2x-3b+7}{x-1}
Podijelite obje strane s x-1.
a=\frac{bx+2x-3b+7}{x-1}
Dijelјenje sa x-1 poništava množenje sa x-1.
ax-3x+3b-4=\left(b-1\right)x+a+3
Koristite distributivno svojstvo da biste pomnožili a-3 sa x.
ax-3x+3b-4=bx-x+a+3
Koristite distributivno svojstvo da biste pomnožili b-1 sa x.
ax-3x+3b-4-bx=-x+a+3
Oduzmite bx s obje strane.
-3x+3b-4-bx=-x+a+3-ax
Oduzmite ax s obje strane.
3b-4-bx=-x+a+3-ax+3x
Dodajte 3x na obje strane.
3b-4-bx=2x+a+3-ax
Kombinirajte -x i 3x da biste dobili 2x.
3b-bx=2x+a+3-ax+4
Dodajte 4 na obje strane.
3b-bx=2x+a+7-ax
Saberite 3 i 4 da biste dobili 7.
\left(3-x\right)b=2x+a+7-ax
Kombinirajte sve termine koji sadrže b.
\left(3-x\right)b=7+a+2x-ax
Jednačina je u standardnom obliku.
\frac{\left(3-x\right)b}{3-x}=\frac{7+a+2x-ax}{3-x}
Podijelite obje strane s -x+3.
b=\frac{7+a+2x-ax}{3-x}
Dijelјenje sa -x+3 poništava množenje sa -x+3.
ax-3x+3b-4=\left(b-1\right)x+a+3
Koristite distributivno svojstvo da biste pomnožili a-3 sa x.
ax-3x+3b-4=bx-x+a+3
Koristite distributivno svojstvo da biste pomnožili b-1 sa x.
ax-3x+3b-4-a=bx-x+3
Oduzmite a s obje strane.
ax+3b-4-a=bx-x+3+3x
Dodajte 3x na obje strane.
ax+3b-4-a=bx+2x+3
Kombinirajte -x i 3x da biste dobili 2x.
ax-4-a=bx+2x+3-3b
Oduzmite 3b s obje strane.
ax-a=bx+2x+3-3b+4
Dodajte 4 na obje strane.
ax-a=bx+2x+7-3b
Saberite 3 i 4 da biste dobili 7.
\left(x-1\right)a=bx+2x+7-3b
Kombinirajte sve termine koji sadrže a.
\left(x-1\right)a=bx+2x-3b+7
Jednačina je u standardnom obliku.
\frac{\left(x-1\right)a}{x-1}=\frac{bx+2x-3b+7}{x-1}
Podijelite obje strane s x-1.
a=\frac{bx+2x-3b+7}{x-1}
Dijelјenje sa x-1 poništava množenje sa x-1.
ax-3x+3b-4=\left(b-1\right)x+a+3
Koristite distributivno svojstvo da biste pomnožili a-3 sa x.
ax-3x+3b-4=bx-x+a+3
Koristite distributivno svojstvo da biste pomnožili b-1 sa x.
ax-3x+3b-4-bx=-x+a+3
Oduzmite bx s obje strane.
-3x+3b-4-bx=-x+a+3-ax
Oduzmite ax s obje strane.
3b-4-bx=-x+a+3-ax+3x
Dodajte 3x na obje strane.
3b-4-bx=2x+a+3-ax
Kombinirajte -x i 3x da biste dobili 2x.
3b-bx=2x+a+3-ax+4
Dodajte 4 na obje strane.
3b-bx=2x+a+7-ax
Saberite 3 i 4 da biste dobili 7.
\left(3-x\right)b=2x+a+7-ax
Kombinirajte sve termine koji sadrže b.
\left(3-x\right)b=7+a+2x-ax
Jednačina je u standardnom obliku.
\frac{\left(3-x\right)b}{3-x}=\frac{7+a+2x-ax}{3-x}
Podijelite obje strane s -x+3.
b=\frac{7+a+2x-ax}{3-x}
Dijelјenje sa -x+3 poništava množenje sa -x+3.
Primjeri
kvadratna jednacina
{ x } ^ { 2 } - 4 x - 5 = 0
trigonometrija
4 \sin \theta \cos \theta = 2 \sin \theta
Linearna jednačina
y = 3x + 4
Aritmetika
699 * 533
Matrica
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultana jednačina
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferencijacija
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integracija
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Granice
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}