Preskoči na glavni sadržaj
Procijeni
Tick mark Image
Razlikovanje u pogledu x
Tick mark Image

Slični problemi iz web pretrage

Dijeliti

\frac{\mathrm{d}}{\mathrm{d}x}(\frac{xx^{2}}{2x^{2}}+\frac{2\times 2}{2x^{2}})
Da biste izvršili zbrajanje ili oduzimanje izraza, rastavite ih kako bi im nazivnici bili isti. Najmanji zajednički množilac brojeva 2 i x^{2} je 2x^{2}. Pomnožite \frac{x}{2} i \frac{x^{2}}{x^{2}}. Pomnožite \frac{2}{x^{2}} i \frac{2}{2}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{xx^{2}+2\times 2}{2x^{2}})
Pošto \frac{xx^{2}}{2x^{2}} i \frac{2\times 2}{2x^{2}} imaju isti imenilac, saberite ih tako što ćete sabrati njihove brojioce.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x^{3}+4}{2x^{2}})
Izvršite množenja u xx^{2}+2\times 2.
\frac{2x^{2}\frac{\mathrm{d}}{\mathrm{d}x}(x^{3}+4)-\left(x^{3}+4\right)\frac{\mathrm{d}}{\mathrm{d}x}(2x^{2})}{\left(2x^{2}\right)^{2}}
Za bilo koje dvije funkcije koje se mogu razlikovati, izvedeni broj količnika dvije funkcije je imenilac puta izvedeni broj imenioca minus imenilac puta izvedeni broj imenioca, sve podijelјeno imeniocem na kvadrat.
\frac{2x^{2}\times 3x^{3-1}-\left(x^{3}+4\right)\times 2\times 2x^{2-1}}{\left(2x^{2}\right)^{2}}
Izvod polinoma predstavlјa zbir izvoda njegovih termina. Izvod termina konstante je 0. Izvod od ax^{n} je nax^{n-1}.
\frac{2x^{2}\times 3x^{2}-\left(x^{3}+4\right)\times 4x^{1}}{\left(2x^{2}\right)^{2}}
Izvršite aritmetičku operaciju.
\frac{2x^{2}\times 3x^{2}-\left(x^{3}\times 4x^{1}+4\times 4x^{1}\right)}{\left(2x^{2}\right)^{2}}
Proširite pomoću distributivnog svojstva.
\frac{2\times 3x^{2+2}-\left(4x^{3+1}+4\times 4x^{1}\right)}{\left(2x^{2}\right)^{2}}
Da biste pomnožili stepene iste baze, saberite njihove eksponente.
\frac{6x^{4}-\left(4x^{4}+16x^{1}\right)}{\left(2x^{2}\right)^{2}}
Izvršite aritmetičku operaciju.
\frac{6x^{4}-4x^{4}-16x^{1}}{\left(2x^{2}\right)^{2}}
Uklonite nepotrebne zagrade.
\frac{\left(6-4\right)x^{4}-16x^{1}}{\left(2x^{2}\right)^{2}}
Kombinirajte slične termine.
\frac{2x^{4}-16x^{1}}{\left(2x^{2}\right)^{2}}
Oduzmite 4 od 6.
\frac{2x\left(x^{3}-8x^{0}\right)}{\left(2x^{2}\right)^{2}}
Izbacite 2x.
\frac{2x\left(x^{3}-8x^{0}\right)}{2^{2}\left(x^{2}\right)^{2}}
Da biste podigli proizvod dva ili više brojeva na neki stepen, podignite svaki broj na taj stepen i izračunajte njihov proizvod.
\frac{2x\left(x^{3}-8x^{0}\right)}{4\left(x^{2}\right)^{2}}
Podignite 2 na stepen 2.
\frac{2x\left(x^{3}-8x^{0}\right)}{4x^{2\times 2}}
Da biste podigli stepen na neki drugi stepen, pomnožite eksponente.
\frac{2x\left(x^{3}-8x^{0}\right)}{4x^{4}}
Pomnožite 2 i 2.
\frac{2\left(x^{3}-8x^{0}\right)}{4x^{4-1}}
Da biste podijelili stepene iste osnove, oduzmite eksponent brojioca od eksponenta imenioca.
\frac{2\left(x^{3}-8x^{0}\right)}{4x^{3}}
Oduzmite 1 od 4.
\frac{2\left(x^{3}-8\times 1\right)}{4x^{3}}
Za bilo koji izraz t izuzev 0, t^{0}=1.
\frac{2\left(x^{3}-8\right)}{4x^{3}}
Za bilo koji izraz t, t\times 1=t i 1t=t.