Procijeni
a^{9}\left(bc\right)^{3}
Proširi
a^{9}\left(bc\right)^{3}
Dijeliti
Kopirano u clipboard
\frac{\left(4a^{2}b^{3}\right)^{3}}{\left(3c^{4}\right)^{3}}\times \left(\frac{6ac^{5}}{8b^{2}}\right)^{3}
Da biste podigli \frac{4a^{2}b^{3}}{3c^{4}} na potenciju, dignite brojnik i nazivnik na potenciju i zatim podijelite.
\frac{\left(4a^{2}b^{3}\right)^{3}}{\left(3c^{4}\right)^{3}}\times \left(\frac{3ac^{5}}{4b^{2}}\right)^{3}
Otkaži 2 u brojiocu i imeniocu.
\frac{\left(4a^{2}b^{3}\right)^{3}}{\left(3c^{4}\right)^{3}}\times \frac{\left(3ac^{5}\right)^{3}}{\left(4b^{2}\right)^{3}}
Da biste podigli \frac{3ac^{5}}{4b^{2}} na potenciju, dignite brojnik i nazivnik na potenciju i zatim podijelite.
\frac{\left(4a^{2}b^{3}\right)^{3}\times \left(3ac^{5}\right)^{3}}{\left(3c^{4}\right)^{3}\times \left(4b^{2}\right)^{3}}
Pomnožite \frac{\left(4a^{2}b^{3}\right)^{3}}{\left(3c^{4}\right)^{3}} i \frac{\left(3ac^{5}\right)^{3}}{\left(4b^{2}\right)^{3}} tako što ćete pomnožiti brojilac s brojiocem i imenilac s imeniocem.
\frac{4^{3}\left(a^{2}\right)^{3}\left(b^{3}\right)^{3}\times \left(3ac^{5}\right)^{3}}{\left(3c^{4}\right)^{3}\times \left(4b^{2}\right)^{3}}
Proširite \left(4a^{2}b^{3}\right)^{3}.
\frac{4^{3}a^{6}\left(b^{3}\right)^{3}\times \left(3ac^{5}\right)^{3}}{\left(3c^{4}\right)^{3}\times \left(4b^{2}\right)^{3}}
Da biste podigli stepen na neki drugi stepen, pomnožite eksponente. Pomnožite 2 i 3 da biste dobili 6.
\frac{4^{3}a^{6}b^{9}\times \left(3ac^{5}\right)^{3}}{\left(3c^{4}\right)^{3}\times \left(4b^{2}\right)^{3}}
Da biste podigli stepen na neki drugi stepen, pomnožite eksponente. Pomnožite 3 i 3 da biste dobili 9.
\frac{64a^{6}b^{9}\times \left(3ac^{5}\right)^{3}}{\left(3c^{4}\right)^{3}\times \left(4b^{2}\right)^{3}}
Izračunajte 4 stepen od 3 i dobijte 64.
\frac{64a^{6}b^{9}\times 3^{3}a^{3}\left(c^{5}\right)^{3}}{\left(3c^{4}\right)^{3}\times \left(4b^{2}\right)^{3}}
Proširite \left(3ac^{5}\right)^{3}.
\frac{64a^{6}b^{9}\times 3^{3}a^{3}c^{15}}{\left(3c^{4}\right)^{3}\times \left(4b^{2}\right)^{3}}
Da biste podigli stepen na neki drugi stepen, pomnožite eksponente. Pomnožite 5 i 3 da biste dobili 15.
\frac{64a^{6}b^{9}\times 27a^{3}c^{15}}{\left(3c^{4}\right)^{3}\times \left(4b^{2}\right)^{3}}
Izračunajte 3 stepen od 3 i dobijte 27.
\frac{1728a^{6}b^{9}a^{3}c^{15}}{\left(3c^{4}\right)^{3}\times \left(4b^{2}\right)^{3}}
Pomnožite 64 i 27 da biste dobili 1728.
\frac{1728a^{9}b^{9}c^{15}}{\left(3c^{4}\right)^{3}\times \left(4b^{2}\right)^{3}}
Da biste pomnožili stepene iste osnove, saberite eksponente. Saberite 6 i 3 da biste dobili 9.
\frac{1728a^{9}b^{9}c^{15}}{3^{3}\left(c^{4}\right)^{3}\times \left(4b^{2}\right)^{3}}
Proširite \left(3c^{4}\right)^{3}.
\frac{1728a^{9}b^{9}c^{15}}{3^{3}c^{12}\times \left(4b^{2}\right)^{3}}
Da biste podigli stepen na neki drugi stepen, pomnožite eksponente. Pomnožite 4 i 3 da biste dobili 12.
\frac{1728a^{9}b^{9}c^{15}}{27c^{12}\times \left(4b^{2}\right)^{3}}
Izračunajte 3 stepen od 3 i dobijte 27.
\frac{1728a^{9}b^{9}c^{15}}{27c^{12}\times 4^{3}\left(b^{2}\right)^{3}}
Proširite \left(4b^{2}\right)^{3}.
\frac{1728a^{9}b^{9}c^{15}}{27c^{12}\times 4^{3}b^{6}}
Da biste podigli stepen na neki drugi stepen, pomnožite eksponente. Pomnožite 2 i 3 da biste dobili 6.
\frac{1728a^{9}b^{9}c^{15}}{27c^{12}\times 64b^{6}}
Izračunajte 4 stepen od 3 i dobijte 64.
\frac{1728a^{9}b^{9}c^{15}}{1728c^{12}b^{6}}
Pomnožite 27 i 64 da biste dobili 1728.
b^{3}c^{3}a^{9}
Otkaži 1728b^{6}c^{12} u brojiocu i imeniocu.
\frac{\left(4a^{2}b^{3}\right)^{3}}{\left(3c^{4}\right)^{3}}\times \left(\frac{6ac^{5}}{8b^{2}}\right)^{3}
Da biste podigli \frac{4a^{2}b^{3}}{3c^{4}} na potenciju, dignite brojnik i nazivnik na potenciju i zatim podijelite.
\frac{\left(4a^{2}b^{3}\right)^{3}}{\left(3c^{4}\right)^{3}}\times \left(\frac{3ac^{5}}{4b^{2}}\right)^{3}
Otkaži 2 u brojiocu i imeniocu.
\frac{\left(4a^{2}b^{3}\right)^{3}}{\left(3c^{4}\right)^{3}}\times \frac{\left(3ac^{5}\right)^{3}}{\left(4b^{2}\right)^{3}}
Da biste podigli \frac{3ac^{5}}{4b^{2}} na potenciju, dignite brojnik i nazivnik na potenciju i zatim podijelite.
\frac{\left(4a^{2}b^{3}\right)^{3}\times \left(3ac^{5}\right)^{3}}{\left(3c^{4}\right)^{3}\times \left(4b^{2}\right)^{3}}
Pomnožite \frac{\left(4a^{2}b^{3}\right)^{3}}{\left(3c^{4}\right)^{3}} i \frac{\left(3ac^{5}\right)^{3}}{\left(4b^{2}\right)^{3}} tako što ćete pomnožiti brojilac s brojiocem i imenilac s imeniocem.
\frac{4^{3}\left(a^{2}\right)^{3}\left(b^{3}\right)^{3}\times \left(3ac^{5}\right)^{3}}{\left(3c^{4}\right)^{3}\times \left(4b^{2}\right)^{3}}
Proširite \left(4a^{2}b^{3}\right)^{3}.
\frac{4^{3}a^{6}\left(b^{3}\right)^{3}\times \left(3ac^{5}\right)^{3}}{\left(3c^{4}\right)^{3}\times \left(4b^{2}\right)^{3}}
Da biste podigli stepen na neki drugi stepen, pomnožite eksponente. Pomnožite 2 i 3 da biste dobili 6.
\frac{4^{3}a^{6}b^{9}\times \left(3ac^{5}\right)^{3}}{\left(3c^{4}\right)^{3}\times \left(4b^{2}\right)^{3}}
Da biste podigli stepen na neki drugi stepen, pomnožite eksponente. Pomnožite 3 i 3 da biste dobili 9.
\frac{64a^{6}b^{9}\times \left(3ac^{5}\right)^{3}}{\left(3c^{4}\right)^{3}\times \left(4b^{2}\right)^{3}}
Izračunajte 4 stepen od 3 i dobijte 64.
\frac{64a^{6}b^{9}\times 3^{3}a^{3}\left(c^{5}\right)^{3}}{\left(3c^{4}\right)^{3}\times \left(4b^{2}\right)^{3}}
Proširite \left(3ac^{5}\right)^{3}.
\frac{64a^{6}b^{9}\times 3^{3}a^{3}c^{15}}{\left(3c^{4}\right)^{3}\times \left(4b^{2}\right)^{3}}
Da biste podigli stepen na neki drugi stepen, pomnožite eksponente. Pomnožite 5 i 3 da biste dobili 15.
\frac{64a^{6}b^{9}\times 27a^{3}c^{15}}{\left(3c^{4}\right)^{3}\times \left(4b^{2}\right)^{3}}
Izračunajte 3 stepen od 3 i dobijte 27.
\frac{1728a^{6}b^{9}a^{3}c^{15}}{\left(3c^{4}\right)^{3}\times \left(4b^{2}\right)^{3}}
Pomnožite 64 i 27 da biste dobili 1728.
\frac{1728a^{9}b^{9}c^{15}}{\left(3c^{4}\right)^{3}\times \left(4b^{2}\right)^{3}}
Da biste pomnožili stepene iste osnove, saberite eksponente. Saberite 6 i 3 da biste dobili 9.
\frac{1728a^{9}b^{9}c^{15}}{3^{3}\left(c^{4}\right)^{3}\times \left(4b^{2}\right)^{3}}
Proširite \left(3c^{4}\right)^{3}.
\frac{1728a^{9}b^{9}c^{15}}{3^{3}c^{12}\times \left(4b^{2}\right)^{3}}
Da biste podigli stepen na neki drugi stepen, pomnožite eksponente. Pomnožite 4 i 3 da biste dobili 12.
\frac{1728a^{9}b^{9}c^{15}}{27c^{12}\times \left(4b^{2}\right)^{3}}
Izračunajte 3 stepen od 3 i dobijte 27.
\frac{1728a^{9}b^{9}c^{15}}{27c^{12}\times 4^{3}\left(b^{2}\right)^{3}}
Proširite \left(4b^{2}\right)^{3}.
\frac{1728a^{9}b^{9}c^{15}}{27c^{12}\times 4^{3}b^{6}}
Da biste podigli stepen na neki drugi stepen, pomnožite eksponente. Pomnožite 2 i 3 da biste dobili 6.
\frac{1728a^{9}b^{9}c^{15}}{27c^{12}\times 64b^{6}}
Izračunajte 4 stepen od 3 i dobijte 64.
\frac{1728a^{9}b^{9}c^{15}}{1728c^{12}b^{6}}
Pomnožite 27 i 64 da biste dobili 1728.
b^{3}c^{3}a^{9}
Otkaži 1728b^{6}c^{12} u brojiocu i imeniocu.
Primjeri
kvadratna jednacina
{ x } ^ { 2 } - 4 x - 5 = 0
trigonometrija
4 \sin \theta \cos \theta = 2 \sin \theta
Linearna jednačina
y = 3x + 4
Aritmetika
699 * 533
Matrica
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultana jednačina
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferencijacija
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integracija
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Granice
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}