Procijeni
-\frac{9}{4}=-2,25
Faktor
-\frac{9}{4} = -2\frac{1}{4} = -2,25
Dijeliti
Kopirano u clipboard
\left(\frac{2}{3}\right)^{-7}\left(-\frac{3}{2}\right)^{-5}+8\left(\left(2-\frac{1}{4}\right)\times \frac{1}{7}-\frac{3}{4}\right)+\left(\left(-\frac{3}{2}\right)^{2}\times \left(\frac{1}{3}\right)^{2}\right)^{-1}
Da biste pomnožili stepene iste osnove, saberite eksponente. Saberite -4 i -3 da biste dobili -7.
\frac{2187}{128}\left(-\frac{3}{2}\right)^{-5}+8\left(\left(2-\frac{1}{4}\right)\times \frac{1}{7}-\frac{3}{4}\right)+\left(\left(-\frac{3}{2}\right)^{2}\times \left(\frac{1}{3}\right)^{2}\right)^{-1}
Izračunajte \frac{2}{3} stepen od -7 i dobijte \frac{2187}{128}.
\frac{2187}{128}\left(-\frac{32}{243}\right)+8\left(\left(2-\frac{1}{4}\right)\times \frac{1}{7}-\frac{3}{4}\right)+\left(\left(-\frac{3}{2}\right)^{2}\times \left(\frac{1}{3}\right)^{2}\right)^{-1}
Izračunajte -\frac{3}{2} stepen od -5 i dobijte -\frac{32}{243}.
-\frac{9}{4}+8\left(\left(2-\frac{1}{4}\right)\times \frac{1}{7}-\frac{3}{4}\right)+\left(\left(-\frac{3}{2}\right)^{2}\times \left(\frac{1}{3}\right)^{2}\right)^{-1}
Pomnožite \frac{2187}{128} i -\frac{32}{243} da biste dobili -\frac{9}{4}.
-\frac{9}{4}+8\left(\frac{7}{4}\times \frac{1}{7}-\frac{3}{4}\right)+\left(\left(-\frac{3}{2}\right)^{2}\times \left(\frac{1}{3}\right)^{2}\right)^{-1}
Oduzmite \frac{1}{4} od 2 da biste dobili \frac{7}{4}.
-\frac{9}{4}+8\left(\frac{1}{4}-\frac{3}{4}\right)+\left(\left(-\frac{3}{2}\right)^{2}\times \left(\frac{1}{3}\right)^{2}\right)^{-1}
Pomnožite \frac{7}{4} i \frac{1}{7} da biste dobili \frac{1}{4}.
-\frac{9}{4}+8\left(-\frac{1}{2}\right)+\left(\left(-\frac{3}{2}\right)^{2}\times \left(\frac{1}{3}\right)^{2}\right)^{-1}
Oduzmite \frac{3}{4} od \frac{1}{4} da biste dobili -\frac{1}{2}.
-\frac{9}{4}-4+\left(\left(-\frac{3}{2}\right)^{2}\times \left(\frac{1}{3}\right)^{2}\right)^{-1}
Pomnožite 8 i -\frac{1}{2} da biste dobili -4.
-\frac{25}{4}+\left(\left(-\frac{3}{2}\right)^{2}\times \left(\frac{1}{3}\right)^{2}\right)^{-1}
Oduzmite 4 od -\frac{9}{4} da biste dobili -\frac{25}{4}.
-\frac{25}{4}+\left(\frac{9}{4}\times \left(\frac{1}{3}\right)^{2}\right)^{-1}
Izračunajte -\frac{3}{2} stepen od 2 i dobijte \frac{9}{4}.
-\frac{25}{4}+\left(\frac{9}{4}\times \frac{1}{9}\right)^{-1}
Izračunajte \frac{1}{3} stepen od 2 i dobijte \frac{1}{9}.
-\frac{25}{4}+\left(\frac{1}{4}\right)^{-1}
Pomnožite \frac{9}{4} i \frac{1}{9} da biste dobili \frac{1}{4}.
-\frac{25}{4}+4
Izračunajte \frac{1}{4} stepen od -1 i dobijte 4.
-\frac{9}{4}
Saberite -\frac{25}{4} i 4 da biste dobili -\frac{9}{4}.
Primjeri
kvadratna jednacina
{ x } ^ { 2 } - 4 x - 5 = 0
trigonometrija
4 \sin \theta \cos \theta = 2 \sin \theta
Linearna jednačina
y = 3x + 4
Aritmetika
699 * 533
Matrica
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultana jednačina
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferencijacija
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integracija
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Granice
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}