Procijeni
\frac{8\sqrt{10}}{9}-\frac{4\sqrt{2}}{3}-\frac{16\sqrt{5}}{3}+\frac{118}{9}\approx 2,110710624
Proširi
\frac{8 \sqrt{10}}{9} - \frac{4 \sqrt{2}}{3} - \frac{16 \sqrt{5}}{3} + \frac{118}{9} = 2,110710624
Dijeliti
Kopirano u clipboard
\left(\frac{\sqrt{5}+\sqrt{2}}{\left(\sqrt{5}-\sqrt{2}\right)\left(\sqrt{5}+\sqrt{2}\right)}+\frac{1}{\sqrt{5}+\sqrt{4}}\right)^{2}
Racionalizirajte imenilac broja \frac{1}{\sqrt{5}-\sqrt{2}} tako što ćete pomnožiti brojilac i imenilac sa \sqrt{5}+\sqrt{2}.
\left(\frac{\sqrt{5}+\sqrt{2}}{\left(\sqrt{5}\right)^{2}-\left(\sqrt{2}\right)^{2}}+\frac{1}{\sqrt{5}+\sqrt{4}}\right)^{2}
Razmotrite \left(\sqrt{5}-\sqrt{2}\right)\left(\sqrt{5}+\sqrt{2}\right). Množenje se može transformirati u razliku kvadrata pomoću pravila: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\left(\frac{\sqrt{5}+\sqrt{2}}{5-2}+\frac{1}{\sqrt{5}+\sqrt{4}}\right)^{2}
Izračunajte kvadrat od \sqrt{5}. Izračunajte kvadrat od \sqrt{2}.
\left(\frac{\sqrt{5}+\sqrt{2}}{3}+\frac{1}{\sqrt{5}+\sqrt{4}}\right)^{2}
Oduzmite 2 od 5 da biste dobili 3.
\left(\frac{\sqrt{5}+\sqrt{2}}{3}+\frac{1}{\sqrt{5}+2}\right)^{2}
Izračunajte kvadratni koren od 4 i dobijte 2.
\left(\frac{\sqrt{5}+\sqrt{2}}{3}+\frac{\sqrt{5}-2}{\left(\sqrt{5}+2\right)\left(\sqrt{5}-2\right)}\right)^{2}
Racionalizirajte imenilac broja \frac{1}{\sqrt{5}+2} tako što ćete pomnožiti brojilac i imenilac sa \sqrt{5}-2.
\left(\frac{\sqrt{5}+\sqrt{2}}{3}+\frac{\sqrt{5}-2}{\left(\sqrt{5}\right)^{2}-2^{2}}\right)^{2}
Razmotrite \left(\sqrt{5}+2\right)\left(\sqrt{5}-2\right). Množenje se može transformirati u razliku kvadrata pomoću pravila: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\left(\frac{\sqrt{5}+\sqrt{2}}{3}+\frac{\sqrt{5}-2}{5-4}\right)^{2}
Izračunajte kvadrat od \sqrt{5}. Izračunajte kvadrat od 2.
\left(\frac{\sqrt{5}+\sqrt{2}}{3}+\frac{\sqrt{5}-2}{1}\right)^{2}
Oduzmite 4 od 5 da biste dobili 1.
\left(\frac{\sqrt{5}+\sqrt{2}}{3}+\sqrt{5}-2\right)^{2}
Svaki broj podijeljen sa jedan je taj broj.
\left(\frac{\sqrt{5}+\sqrt{2}}{3}+\frac{3\left(\sqrt{5}-2\right)}{3}\right)^{2}
Da biste izvršili zbrajanje ili oduzimanje izraza, rastavite ih kako bi im nazivnici bili isti. Pomnožite \sqrt{5}-2 i \frac{3}{3}.
\left(\frac{\sqrt{5}+\sqrt{2}+3\left(\sqrt{5}-2\right)}{3}\right)^{2}
Pošto \frac{\sqrt{5}+\sqrt{2}}{3} i \frac{3\left(\sqrt{5}-2\right)}{3} imaju isti imenilac, saberite ih tako što ćete sabrati njihove brojioce.
\left(\frac{\sqrt{5}+\sqrt{2}+3\sqrt{5}-6}{3}\right)^{2}
Izvršite množenja u \sqrt{5}+\sqrt{2}+3\left(\sqrt{5}-2\right).
\left(\frac{4\sqrt{5}+\sqrt{2}-6}{3}\right)^{2}
Izvršite računanje za izraz \sqrt{5}+\sqrt{2}+3\sqrt{5}-6.
\frac{\left(4\sqrt{5}+\sqrt{2}-6\right)^{2}}{3^{2}}
Da biste podigli \frac{4\sqrt{5}+\sqrt{2}-6}{3} na potenciju, dignite brojnik i nazivnik na potenciju i zatim podijelite.
\frac{8\sqrt{2}\sqrt{5}+16\left(\sqrt{5}\right)^{2}+\left(\sqrt{2}\right)^{2}-48\sqrt{5}-12\sqrt{2}+36}{3^{2}}
Izračunajte kvadrat od 4\sqrt{5}+\sqrt{2}-6.
\frac{8\sqrt{10}+16\left(\sqrt{5}\right)^{2}+\left(\sqrt{2}\right)^{2}-48\sqrt{5}-12\sqrt{2}+36}{3^{2}}
Da biste pomnožili \sqrt{2} i \sqrt{5}, pomnožite brojeve u okviru kvadratnog korijena.
\frac{8\sqrt{10}+16\times 5+\left(\sqrt{2}\right)^{2}-48\sqrt{5}-12\sqrt{2}+36}{3^{2}}
Kvadrat broja \sqrt{5} je 5.
\frac{8\sqrt{10}+80+\left(\sqrt{2}\right)^{2}-48\sqrt{5}-12\sqrt{2}+36}{3^{2}}
Pomnožite 16 i 5 da biste dobili 80.
\frac{8\sqrt{10}+80+2-48\sqrt{5}-12\sqrt{2}+36}{3^{2}}
Kvadrat broja \sqrt{2} je 2.
\frac{8\sqrt{10}+82-48\sqrt{5}-12\sqrt{2}+36}{3^{2}}
Saberite 80 i 2 da biste dobili 82.
\frac{8\sqrt{10}+118-48\sqrt{5}-12\sqrt{2}}{3^{2}}
Saberite 82 i 36 da biste dobili 118.
\frac{8\sqrt{10}+118-48\sqrt{5}-12\sqrt{2}}{9}
Izračunajte 3 stepen od 2 i dobijte 9.
\left(\frac{\sqrt{5}+\sqrt{2}}{\left(\sqrt{5}-\sqrt{2}\right)\left(\sqrt{5}+\sqrt{2}\right)}+\frac{1}{\sqrt{5}+\sqrt{4}}\right)^{2}
Racionalizirajte imenilac broja \frac{1}{\sqrt{5}-\sqrt{2}} tako što ćete pomnožiti brojilac i imenilac sa \sqrt{5}+\sqrt{2}.
\left(\frac{\sqrt{5}+\sqrt{2}}{\left(\sqrt{5}\right)^{2}-\left(\sqrt{2}\right)^{2}}+\frac{1}{\sqrt{5}+\sqrt{4}}\right)^{2}
Razmotrite \left(\sqrt{5}-\sqrt{2}\right)\left(\sqrt{5}+\sqrt{2}\right). Množenje se može transformirati u razliku kvadrata pomoću pravila: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\left(\frac{\sqrt{5}+\sqrt{2}}{5-2}+\frac{1}{\sqrt{5}+\sqrt{4}}\right)^{2}
Izračunajte kvadrat od \sqrt{5}. Izračunajte kvadrat od \sqrt{2}.
\left(\frac{\sqrt{5}+\sqrt{2}}{3}+\frac{1}{\sqrt{5}+\sqrt{4}}\right)^{2}
Oduzmite 2 od 5 da biste dobili 3.
\left(\frac{\sqrt{5}+\sqrt{2}}{3}+\frac{1}{\sqrt{5}+2}\right)^{2}
Izračunajte kvadratni koren od 4 i dobijte 2.
\left(\frac{\sqrt{5}+\sqrt{2}}{3}+\frac{\sqrt{5}-2}{\left(\sqrt{5}+2\right)\left(\sqrt{5}-2\right)}\right)^{2}
Racionalizirajte imenilac broja \frac{1}{\sqrt{5}+2} tako što ćete pomnožiti brojilac i imenilac sa \sqrt{5}-2.
\left(\frac{\sqrt{5}+\sqrt{2}}{3}+\frac{\sqrt{5}-2}{\left(\sqrt{5}\right)^{2}-2^{2}}\right)^{2}
Razmotrite \left(\sqrt{5}+2\right)\left(\sqrt{5}-2\right). Množenje se može transformirati u razliku kvadrata pomoću pravila: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\left(\frac{\sqrt{5}+\sqrt{2}}{3}+\frac{\sqrt{5}-2}{5-4}\right)^{2}
Izračunajte kvadrat od \sqrt{5}. Izračunajte kvadrat od 2.
\left(\frac{\sqrt{5}+\sqrt{2}}{3}+\frac{\sqrt{5}-2}{1}\right)^{2}
Oduzmite 4 od 5 da biste dobili 1.
\left(\frac{\sqrt{5}+\sqrt{2}}{3}+\sqrt{5}-2\right)^{2}
Svaki broj podijeljen sa jedan je taj broj.
\left(\frac{\sqrt{5}+\sqrt{2}}{3}+\frac{3\left(\sqrt{5}-2\right)}{3}\right)^{2}
Da biste izvršili zbrajanje ili oduzimanje izraza, rastavite ih kako bi im nazivnici bili isti. Pomnožite \sqrt{5}-2 i \frac{3}{3}.
\left(\frac{\sqrt{5}+\sqrt{2}+3\left(\sqrt{5}-2\right)}{3}\right)^{2}
Pošto \frac{\sqrt{5}+\sqrt{2}}{3} i \frac{3\left(\sqrt{5}-2\right)}{3} imaju isti imenilac, saberite ih tako što ćete sabrati njihove brojioce.
\left(\frac{\sqrt{5}+\sqrt{2}+3\sqrt{5}-6}{3}\right)^{2}
Izvršite množenja u \sqrt{5}+\sqrt{2}+3\left(\sqrt{5}-2\right).
\left(\frac{4\sqrt{5}+\sqrt{2}-6}{3}\right)^{2}
Izvršite računanje za izraz \sqrt{5}+\sqrt{2}+3\sqrt{5}-6.
\frac{\left(4\sqrt{5}+\sqrt{2}-6\right)^{2}}{3^{2}}
Da biste podigli \frac{4\sqrt{5}+\sqrt{2}-6}{3} na potenciju, dignite brojnik i nazivnik na potenciju i zatim podijelite.
\frac{8\sqrt{2}\sqrt{5}+16\left(\sqrt{5}\right)^{2}+\left(\sqrt{2}\right)^{2}-48\sqrt{5}-12\sqrt{2}+36}{3^{2}}
Izračunajte kvadrat od 4\sqrt{5}+\sqrt{2}-6.
\frac{8\sqrt{10}+16\left(\sqrt{5}\right)^{2}+\left(\sqrt{2}\right)^{2}-48\sqrt{5}-12\sqrt{2}+36}{3^{2}}
Da biste pomnožili \sqrt{2} i \sqrt{5}, pomnožite brojeve u okviru kvadratnog korijena.
\frac{8\sqrt{10}+16\times 5+\left(\sqrt{2}\right)^{2}-48\sqrt{5}-12\sqrt{2}+36}{3^{2}}
Kvadrat broja \sqrt{5} je 5.
\frac{8\sqrt{10}+80+\left(\sqrt{2}\right)^{2}-48\sqrt{5}-12\sqrt{2}+36}{3^{2}}
Pomnožite 16 i 5 da biste dobili 80.
\frac{8\sqrt{10}+80+2-48\sqrt{5}-12\sqrt{2}+36}{3^{2}}
Kvadrat broja \sqrt{2} je 2.
\frac{8\sqrt{10}+82-48\sqrt{5}-12\sqrt{2}+36}{3^{2}}
Saberite 80 i 2 da biste dobili 82.
\frac{8\sqrt{10}+118-48\sqrt{5}-12\sqrt{2}}{3^{2}}
Saberite 82 i 36 da biste dobili 118.
\frac{8\sqrt{10}+118-48\sqrt{5}-12\sqrt{2}}{9}
Izračunajte 3 stepen od 2 i dobijte 9.
Primjeri
kvadratna jednacina
{ x } ^ { 2 } - 4 x - 5 = 0
trigonometrija
4 \sin \theta \cos \theta = 2 \sin \theta
Linearna jednačina
y = 3x + 4
Aritmetika
699 * 533
Matrica
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultana jednačina
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferencijacija
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integracija
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Granice
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}