Preskoči na glavni sadržaj
Riješite za x
Tick mark Image
Graf

Slični problemi iz web pretrage

Dijeliti

x^{2}-5x+4=0
Da biste riješili nejednačinu, faktorirajte lijevu stranu. Kvadratni polinom se može faktorirati pomoću transformacije ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), pri čemu x_{1} i x_{2} predstavlјaju rješenja kvadratne jednačine ax^{2}+bx+c=0.
x=\frac{-\left(-5\right)±\sqrt{\left(-5\right)^{2}-4\times 1\times 4}}{2}
Sve nejednakosti izraza ax^{2}+bx+c=0 mogu se riješiti korištenjem kvadratne formule: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Zamijenite 1 sa a, -5 sa b i 4 sa c u kvadratnoj formuli.
x=\frac{5±3}{2}
Izvršite računanje.
x=4 x=1
Riješite jednačinu x=\frac{5±3}{2} kad je ± pozitivno i kad je ± negativno.
\left(x-4\right)\left(x-1\right)\geq 0
Ponovo napišite nejednačinu koristeći dobivena rješenja.
x-4\leq 0 x-1\leq 0
Da bi proizvod bio ≥0, obje vrijednosti x-4 i x-1 moraju biti ≤0 ili ≥0. Razmotrite slučaj kad su x-4 i x-1 ≤0.
x\leq 1
Rješenje koje zadovoljava obje nejednakosti je x\leq 1.
x-1\geq 0 x-4\geq 0
Razmotrite slučaj kad su x-4 i x-1 ≥0.
x\geq 4
Rješenje koje zadovoljava obje nejednakosti je x\geq 4.
x\leq 1\text{; }x\geq 4
Konačno rješenje je unija dobivenih rješenja.