Preskoči na glavni sadržaj
Faktor
Tick mark Image
Procijeni
Tick mark Image
Graf

Slični problemi iz web pretrage

Dijeliti

a+b=-2 ab=1\left(-3\right)=-3
Faktorišite izraz grupisanjem. Prvo, izraz treba prepisati kao x^{2}+ax+bx-3. Da biste pronašli a i b, uspostavite sistem koji treba riješiti.
a=-3 b=1
Pošto je ab negativno, a a b ima suprotan znak. Pošto je a+b negativan, negativan broj ima veću apsolutnu vrijednost od pozitivnog. Jedini takav par je rješenje sistema.
\left(x^{2}-3x\right)+\left(x-3\right)
Ponovo napišite x^{2}-2x-3 kao \left(x^{2}-3x\right)+\left(x-3\right).
x\left(x-3\right)+x-3
Izdvojite x iz x^{2}-3x.
\left(x-3\right)\left(x+1\right)
Izdvojite obični izraz x-3 koristeći svojstvo distribucije.
x^{2}-2x-3=0
Kvadratni polinom se može faktorirati pomoću transformacije ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), pri čemu x_{1} i x_{2} predstavlјaju rješenja kvadratne jednačine ax^{2}+bx+c=0.
x=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\left(-3\right)}}{2}
Sve jednačine u obrascu ax^{2}+bx+c=0 mogu se riješiti pomoću kvadratne formule: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadratna formula daje dva rješenja, jedno kada je ± sabiranje, a drugo kada je oduzimanje.
x=\frac{-\left(-2\right)±\sqrt{4-4\left(-3\right)}}{2}
Izračunajte kvadrat od -2.
x=\frac{-\left(-2\right)±\sqrt{4+12}}{2}
Pomnožite -4 i -3.
x=\frac{-\left(-2\right)±\sqrt{16}}{2}
Saberite 4 i 12.
x=\frac{-\left(-2\right)±4}{2}
Izračunajte kvadratni korijen od 16.
x=\frac{2±4}{2}
Opozit broja -2 je 2.
x=\frac{6}{2}
Sada riješite jednačinu x=\frac{2±4}{2} kada je ± plus. Saberite 2 i 4.
x=3
Podijelite 6 sa 2.
x=-\frac{2}{2}
Sada riješite jednačinu x=\frac{2±4}{2} kada je ± minus. Oduzmite 4 od 2.
x=-1
Podijelite -2 sa 2.
x^{2}-2x-3=\left(x-3\right)\left(x-\left(-1\right)\right)
Faktorirajte originalni izraz koristeći ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Zamijenite 3 sa x_{1} i -1 sa x_{2}.
x^{2}-2x-3=\left(x-3\right)\left(x+1\right)
Pojednostavite sve izraze koji imaju oblik p-\left(-q\right) u p+q.