Riješite za x
x=-3
x=-1
Graf
Dijeliti
Kopirano u clipboard
a+b=4 ab=3
Da biste riješili jednadžbu, faktorišite x^{2}+4x+3 koristeći formulu x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). Da biste pronašli a i b, uspostavite sistem koji treba riješiti.
a=1 b=3
Pošto je ab pozitivno, a a b ima isti znak. Pošto je a+b pozitivno, a a b su oba pozitivna. Jedini takav par je rješenje sistema.
\left(x+1\right)\left(x+3\right)
Ponovo napišite faktorisani izraz \left(x+a\right)\left(x+b\right) pomoću dobijenih korena.
x=-1 x=-3
Da biste došli do rješenja jednadžbe, riješite x+1=0 i x+3=0.
a+b=4 ab=1\times 3=3
Da biste riješili jednadžbu, faktorišite lijevu stranu grupisanjem. Prvo, lijevu stranu treba prepisati kao x^{2}+ax+bx+3. Da biste pronašli a i b, uspostavite sistem koji treba riješiti.
a=1 b=3
Pošto je ab pozitivno, a a b ima isti znak. Pošto je a+b pozitivno, a a b su oba pozitivna. Jedini takav par je rješenje sistema.
\left(x^{2}+x\right)+\left(3x+3\right)
Ponovo napišite x^{2}+4x+3 kao \left(x^{2}+x\right)+\left(3x+3\right).
x\left(x+1\right)+3\left(x+1\right)
Isključite x u prvoj i 3 drugoj grupi.
\left(x+1\right)\left(x+3\right)
Izdvojite obični izraz x+1 koristeći svojstvo distribucije.
x=-1 x=-3
Da biste došli do rješenja jednadžbe, riješite x+1=0 i x+3=0.
x^{2}+4x+3=0
Sve jednačine u obrascu ax^{2}+bx+c=0 mogu se riješiti pomoću kvadratne formule: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadratna formula daje dva rješenja, jedno kada je ± sabiranje, a drugo kada je oduzimanje.
x=\frac{-4±\sqrt{4^{2}-4\times 3}}{2}
Ova jednačina je u standardnom obliku: ax^{2}+bx+c=0. Zamijenite 1 i a, 4 i b, kao i 3 i c u kvadratnoj formuli, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-4±\sqrt{16-4\times 3}}{2}
Izračunajte kvadrat od 4.
x=\frac{-4±\sqrt{16-12}}{2}
Pomnožite -4 i 3.
x=\frac{-4±\sqrt{4}}{2}
Saberite 16 i -12.
x=\frac{-4±2}{2}
Izračunajte kvadratni korijen od 4.
x=-\frac{2}{2}
Sada riješite jednačinu x=\frac{-4±2}{2} kada je ± plus. Saberite -4 i 2.
x=-1
Podijelite -2 sa 2.
x=-\frac{6}{2}
Sada riješite jednačinu x=\frac{-4±2}{2} kada je ± minus. Oduzmite 2 od -4.
x=-3
Podijelite -6 sa 2.
x=-1 x=-3
Jednačina je riješena.
x^{2}+4x+3=0
Kvadratne jednačine kao što je ova mogu se riješiti dovršavanjem kvadrata. Da bi se dovršio kvadrat, jednačina mora biti u obliku x^{2}+bx=c.
x^{2}+4x+3-3=-3
Oduzmite 3 s obje strane jednačine.
x^{2}+4x=-3
Oduzimanjem 3 od samog sebe ostaje 0.
x^{2}+4x+2^{2}=-3+2^{2}
Podijelite 4, koeficijent izraza x, sa 2 da biste dobili 2. Zatim dodajte kvadrat od 2 na obje strane jednačine. Ovaj korak čini lijevu stranu jednačine savršenim kvadratom.
x^{2}+4x+4=-3+4
Izračunajte kvadrat od 2.
x^{2}+4x+4=1
Saberite -3 i 4.
\left(x+2\right)^{2}=1
Faktorirajte x^{2}+4x+4. Uopćeno govoreći, kada je x^{2}+bx+c savršeni kvadrat, on se uvijek može faktorirati kao \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+2\right)^{2}}=\sqrt{1}
Izračunajte kvadratni korijen od obje strane jednačine.
x+2=1 x+2=-1
Pojednostavite.
x=-1 x=-3
Oduzmite 2 s obje strane jednačine.
Primjeri
kvadratna jednacina
{ x } ^ { 2 } - 4 x - 5 = 0
trigonometrija
4 \sin \theta \cos \theta = 2 \sin \theta
Linearna jednačina
y = 3x + 4
Aritmetika
699 * 533
Matrica
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultana jednačina
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferencijacija
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integracija
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Granice
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}