Procijeni
2
Dijeliti
Kopirano u clipboard
\left(\frac{1}{2}\right)^{2}\left(\cos(45)\right)^{2}+4\left(\tan(30)\right)^{2}+\frac{1}{2}\left(\sin(90)\right)^{2}-2\left(\cos(90)\right)^{2}+\frac{1}{24}\left(\cos(0)\right)^{2}
Dobijte vrijednost \sin(30) iz tabele trigonometrijske vrijednosti.
\frac{1}{4}\left(\cos(45)\right)^{2}+4\left(\tan(30)\right)^{2}+\frac{1}{2}\left(\sin(90)\right)^{2}-2\left(\cos(90)\right)^{2}+\frac{1}{24}\left(\cos(0)\right)^{2}
Izračunajte \frac{1}{2} stepen od 2 i dobijte \frac{1}{4}.
\frac{1}{4}\times \left(\frac{\sqrt{2}}{2}\right)^{2}+4\left(\tan(30)\right)^{2}+\frac{1}{2}\left(\sin(90)\right)^{2}-2\left(\cos(90)\right)^{2}+\frac{1}{24}\left(\cos(0)\right)^{2}
Dobijte vrijednost \cos(45) iz tabele trigonometrijske vrijednosti.
\frac{1}{4}\times \frac{\left(\sqrt{2}\right)^{2}}{2^{2}}+4\left(\tan(30)\right)^{2}+\frac{1}{2}\left(\sin(90)\right)^{2}-2\left(\cos(90)\right)^{2}+\frac{1}{24}\left(\cos(0)\right)^{2}
Da biste podigli \frac{\sqrt{2}}{2} na potenciju, dignite brojnik i nazivnik na potenciju i zatim podijelite.
\frac{\left(\sqrt{2}\right)^{2}}{4\times 2^{2}}+4\left(\tan(30)\right)^{2}+\frac{1}{2}\left(\sin(90)\right)^{2}-2\left(\cos(90)\right)^{2}+\frac{1}{24}\left(\cos(0)\right)^{2}
Pomnožite \frac{1}{4} i \frac{\left(\sqrt{2}\right)^{2}}{2^{2}} tako što ćete pomnožiti brojilac s brojiocem i imenilac s imeniocem.
\frac{\left(\sqrt{2}\right)^{2}}{4\times 2^{2}}+4\times \left(\frac{\sqrt{3}}{3}\right)^{2}+\frac{1}{2}\left(\sin(90)\right)^{2}-2\left(\cos(90)\right)^{2}+\frac{1}{24}\left(\cos(0)\right)^{2}
Dobijte vrijednost \tan(30) iz tabele trigonometrijske vrijednosti.
\frac{\left(\sqrt{2}\right)^{2}}{4\times 2^{2}}+4\times \frac{\left(\sqrt{3}\right)^{2}}{3^{2}}+\frac{1}{2}\left(\sin(90)\right)^{2}-2\left(\cos(90)\right)^{2}+\frac{1}{24}\left(\cos(0)\right)^{2}
Da biste podigli \frac{\sqrt{3}}{3} na potenciju, dignite brojnik i nazivnik na potenciju i zatim podijelite.
\frac{\left(\sqrt{2}\right)^{2}}{4\times 2^{2}}+\frac{4\left(\sqrt{3}\right)^{2}}{3^{2}}+\frac{1}{2}\left(\sin(90)\right)^{2}-2\left(\cos(90)\right)^{2}+\frac{1}{24}\left(\cos(0)\right)^{2}
Izrazite 4\times \frac{\left(\sqrt{3}\right)^{2}}{3^{2}} kao jedan razlomak.
\frac{\left(\sqrt{2}\right)^{2}}{4\times 2^{2}}+\frac{4\left(\sqrt{3}\right)^{2}}{3^{2}}+\frac{1}{2}\times 1^{2}-2\left(\cos(90)\right)^{2}+\frac{1}{24}\left(\cos(0)\right)^{2}
Dobijte vrijednost \sin(90) iz tabele trigonometrijske vrijednosti.
\frac{\left(\sqrt{2}\right)^{2}}{4\times 2^{2}}+\frac{4\left(\sqrt{3}\right)^{2}}{3^{2}}+\frac{1}{2}\times 1-2\left(\cos(90)\right)^{2}+\frac{1}{24}\left(\cos(0)\right)^{2}
Izračunajte 1 stepen od 2 i dobijte 1.
\frac{\left(\sqrt{2}\right)^{2}}{4\times 2^{2}}+\frac{4\left(\sqrt{3}\right)^{2}}{3^{2}}+\frac{1}{2}-2\left(\cos(90)\right)^{2}+\frac{1}{24}\left(\cos(0)\right)^{2}
Pomnožite \frac{1}{2} i 1 da biste dobili \frac{1}{2}.
\frac{9\left(\sqrt{2}\right)^{2}}{144}+\frac{16\times 4\left(\sqrt{3}\right)^{2}}{144}+\frac{1}{2}-2\left(\cos(90)\right)^{2}+\frac{1}{24}\left(\cos(0)\right)^{2}
Da biste izvršili zbrajanje ili oduzimanje izraza, rastavite ih kako bi im nazivnici bili isti. Najmanji zajednički množilac brojeva 4\times 2^{2} i 3^{2} je 144. Pomnožite \frac{\left(\sqrt{2}\right)^{2}}{4\times 2^{2}} i \frac{9}{9}. Pomnožite \frac{4\left(\sqrt{3}\right)^{2}}{3^{2}} i \frac{16}{16}.
\frac{9\left(\sqrt{2}\right)^{2}+16\times 4\left(\sqrt{3}\right)^{2}}{144}+\frac{1}{2}-2\left(\cos(90)\right)^{2}+\frac{1}{24}\left(\cos(0)\right)^{2}
Pošto \frac{9\left(\sqrt{2}\right)^{2}}{144} i \frac{16\times 4\left(\sqrt{3}\right)^{2}}{144} imaju isti imenilac, saberite ih tako što ćete sabrati njihove brojioce.
\frac{\left(\sqrt{2}\right)^{2}}{16}+\frac{4\left(\sqrt{3}\right)^{2}}{3^{2}}+\frac{8}{16}-2\left(\cos(90)\right)^{2}+\frac{1}{24}\left(\cos(0)\right)^{2}
Da biste izvršili zbrajanje ili oduzimanje izraza, rastavite ih kako bi im nazivnici bili isti. Najmanji zajednički množilac brojeva 4\times 2^{2} i 2 je 16. Pomnožite \frac{1}{2} i \frac{8}{8}.
\frac{\left(\sqrt{2}\right)^{2}+8}{16}+\frac{4\left(\sqrt{3}\right)^{2}}{3^{2}}-2\left(\cos(90)\right)^{2}+\frac{1}{24}\left(\cos(0)\right)^{2}
Pošto \frac{\left(\sqrt{2}\right)^{2}}{16} i \frac{8}{16} imaju isti imenilac, saberite ih tako što ćete sabrati njihove brojioce.
\frac{\left(\sqrt{2}\right)^{2}}{4\times 2^{2}}+\frac{2\times 4\left(\sqrt{3}\right)^{2}}{18}+\frac{9}{18}-2\left(\cos(90)\right)^{2}+\frac{1}{24}\left(\cos(0)\right)^{2}
Da biste izvršili zbrajanje ili oduzimanje izraza, rastavite ih kako bi im nazivnici bili isti. Najmanji zajednički množilac brojeva 3^{2} i 2 je 18. Pomnožite \frac{4\left(\sqrt{3}\right)^{2}}{3^{2}} i \frac{2}{2}. Pomnožite \frac{1}{2} i \frac{9}{9}.
\frac{\left(\sqrt{2}\right)^{2}}{4\times 2^{2}}+\frac{2\times 4\left(\sqrt{3}\right)^{2}+9}{18}-2\left(\cos(90)\right)^{2}+\frac{1}{24}\left(\cos(0)\right)^{2}
Pošto \frac{2\times 4\left(\sqrt{3}\right)^{2}}{18} i \frac{9}{18} imaju isti imenilac, saberite ih tako što ćete sabrati njihove brojioce.
\frac{\left(\sqrt{2}\right)^{2}}{4\times 2^{2}}+\frac{2\times 4\left(\sqrt{3}\right)^{2}+9}{18}-2\times 0^{2}+\frac{1}{24}\left(\cos(0)\right)^{2}
Dobijte vrijednost \cos(90) iz tabele trigonometrijske vrijednosti.
\frac{\left(\sqrt{2}\right)^{2}}{4\times 2^{2}}+\frac{2\times 4\left(\sqrt{3}\right)^{2}+9}{18}-2\times 0+\frac{1}{24}\left(\cos(0)\right)^{2}
Izračunajte 0 stepen od 2 i dobijte 0.
\frac{\left(\sqrt{2}\right)^{2}}{4\times 2^{2}}+\frac{2\times 4\left(\sqrt{3}\right)^{2}+9}{18}-0+\frac{1}{24}\left(\cos(0)\right)^{2}
Pomnožite 2 i 0 da biste dobili 0.
\frac{\left(\sqrt{2}\right)^{2}}{4\times 2^{2}}+\frac{2\times 4\left(\sqrt{3}\right)^{2}+9}{18}-0+\frac{1}{24}\times 1^{2}
Dobijte vrijednost \cos(0) iz tabele trigonometrijske vrijednosti.
\frac{\left(\sqrt{2}\right)^{2}}{4\times 2^{2}}+\frac{2\times 4\left(\sqrt{3}\right)^{2}+9}{18}-0+\frac{1}{24}\times 1
Izračunajte 1 stepen od 2 i dobijte 1.
\frac{\left(\sqrt{2}\right)^{2}}{4\times 2^{2}}+\frac{2\times 4\left(\sqrt{3}\right)^{2}+9}{18}-0+\frac{1}{24}
Pomnožite \frac{1}{24} i 1 da biste dobili \frac{1}{24}.
\frac{2}{4\times 2^{2}}+\frac{2\times 4\left(\sqrt{3}\right)^{2}+9}{18}-0+\frac{1}{24}
Kvadrat broja \sqrt{2} je 2.
\frac{2}{4\times 4}+\frac{2\times 4\left(\sqrt{3}\right)^{2}+9}{18}-0+\frac{1}{24}
Izračunajte 2 stepen od 2 i dobijte 4.
\frac{2}{16}+\frac{2\times 4\left(\sqrt{3}\right)^{2}+9}{18}-0+\frac{1}{24}
Pomnožite 4 i 4 da biste dobili 16.
\frac{1}{8}+\frac{2\times 4\left(\sqrt{3}\right)^{2}+9}{18}-0+\frac{1}{24}
Svedite razlomak \frac{2}{16} na najprostije elemente rastavlјanjem i kraćenjem 2.
\frac{1}{8}+\frac{8\left(\sqrt{3}\right)^{2}+9}{18}-0+\frac{1}{24}
Pomnožite 2 i 4 da biste dobili 8.
\frac{1}{8}+\frac{8\times 3+9}{18}-0+\frac{1}{24}
Kvadrat broja \sqrt{3} je 3.
\frac{1}{8}+\frac{24+9}{18}-0+\frac{1}{24}
Pomnožite 8 i 3 da biste dobili 24.
\frac{1}{8}+\frac{33}{18}-0+\frac{1}{24}
Saberite 24 i 9 da biste dobili 33.
\frac{1}{8}+\frac{11}{6}-0+\frac{1}{24}
Svedite razlomak \frac{33}{18} na najprostije elemente rastavlјanjem i kraćenjem 3.
\frac{47}{24}-0+\frac{1}{24}
Saberite \frac{1}{8} i \frac{11}{6} da biste dobili \frac{47}{24}.
\frac{47}{24}+\frac{1}{24}
Oduzmite 0 od \frac{47}{24} da biste dobili \frac{47}{24}.
2
Saberite \frac{47}{24} i \frac{1}{24} da biste dobili 2.
Primjeri
kvadratna jednacina
{ x } ^ { 2 } - 4 x - 5 = 0
trigonometrija
4 \sin \theta \cos \theta = 2 \sin \theta
Linearna jednačina
y = 3x + 4
Aritmetika
699 * 533
Matrica
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultana jednačina
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferencijacija
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integracija
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Granice
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}