Procijeni
\frac{5}{4}=1,25
Faktor
\frac{5}{2 ^ {2}} = 1\frac{1}{4} = 1,25
Dijeliti
Kopirano u clipboard
\frac{\left(\frac{1}{2}+\frac{3}{9}\right)^{2}}{\left(\frac{15}{9}\right)^{2}}+\lceil \left(\frac{\frac{7}{10}}{\frac{84}{90}}+\frac{\frac{24}{9}}{\frac{4}{9}}\right)\times \frac{2}{27}+\frac{5}{12}\rceil
Svedite razlomak \frac{5}{10} na najprostije elemente rastavlјanjem i kraćenjem 5.
\frac{\left(\frac{1}{2}+\frac{1}{3}\right)^{2}}{\left(\frac{15}{9}\right)^{2}}+\lceil \left(\frac{\frac{7}{10}}{\frac{84}{90}}+\frac{\frac{24}{9}}{\frac{4}{9}}\right)\times \frac{2}{27}+\frac{5}{12}\rceil
Svedite razlomak \frac{3}{9} na najprostije elemente rastavlјanjem i kraćenjem 3.
\frac{\left(\frac{5}{6}\right)^{2}}{\left(\frac{15}{9}\right)^{2}}+\lceil \left(\frac{\frac{7}{10}}{\frac{84}{90}}+\frac{\frac{24}{9}}{\frac{4}{9}}\right)\times \frac{2}{27}+\frac{5}{12}\rceil
Saberite \frac{1}{2} i \frac{1}{3} da biste dobili \frac{5}{6}.
\frac{\frac{25}{36}}{\left(\frac{15}{9}\right)^{2}}+\lceil \left(\frac{\frac{7}{10}}{\frac{84}{90}}+\frac{\frac{24}{9}}{\frac{4}{9}}\right)\times \frac{2}{27}+\frac{5}{12}\rceil
Izračunajte \frac{5}{6} stepen od 2 i dobijte \frac{25}{36}.
\frac{\frac{25}{36}}{\left(\frac{5}{3}\right)^{2}}+\lceil \left(\frac{\frac{7}{10}}{\frac{84}{90}}+\frac{\frac{24}{9}}{\frac{4}{9}}\right)\times \frac{2}{27}+\frac{5}{12}\rceil
Svedite razlomak \frac{15}{9} na najprostije elemente rastavlјanjem i kraćenjem 3.
\frac{\frac{25}{36}}{\frac{25}{9}}+\lceil \left(\frac{\frac{7}{10}}{\frac{84}{90}}+\frac{\frac{24}{9}}{\frac{4}{9}}\right)\times \frac{2}{27}+\frac{5}{12}\rceil
Izračunajte \frac{5}{3} stepen od 2 i dobijte \frac{25}{9}.
\frac{25}{36}\times \frac{9}{25}+\lceil \left(\frac{\frac{7}{10}}{\frac{84}{90}}+\frac{\frac{24}{9}}{\frac{4}{9}}\right)\times \frac{2}{27}+\frac{5}{12}\rceil
Podijelite \frac{25}{36} sa \frac{25}{9} tako što ćete pomnožiti \frac{25}{36} recipročnom vrijednošću od \frac{25}{9}.
\frac{1}{4}+\lceil \left(\frac{\frac{7}{10}}{\frac{84}{90}}+\frac{\frac{24}{9}}{\frac{4}{9}}\right)\times \frac{2}{27}+\frac{5}{12}\rceil
Pomnožite \frac{25}{36} i \frac{9}{25} da biste dobili \frac{1}{4}.
\frac{1}{4}+\lceil \left(\frac{7\times 90}{10\times 84}+\frac{\frac{24}{9}}{\frac{4}{9}}\right)\times \frac{2}{27}+\frac{5}{12}\rceil
Podijelite \frac{7}{10} sa \frac{84}{90} tako što ćete pomnožiti \frac{7}{10} recipročnom vrijednošću od \frac{84}{90}.
\frac{1}{4}+\lceil \left(\frac{3}{4}+\frac{\frac{24}{9}}{\frac{4}{9}}\right)\times \frac{2}{27}+\frac{5}{12}\rceil
Otkaži 3\times 7\times 10 u brojiocu i imeniocu.
\frac{1}{4}+\lceil \left(\frac{3}{4}+\frac{24\times 9}{9\times 4}\right)\times \frac{2}{27}+\frac{5}{12}\rceil
Podijelite \frac{24}{9} sa \frac{4}{9} tako što ćete pomnožiti \frac{24}{9} recipročnom vrijednošću od \frac{4}{9}.
\frac{1}{4}+\lceil \left(\frac{3}{4}+2\times 3\right)\times \frac{2}{27}+\frac{5}{12}\rceil
Otkaži 3\times 3\times 4 u brojiocu i imeniocu.
\frac{1}{4}+\lceil \left(\frac{3}{4}+6\right)\times \frac{2}{27}+\frac{5}{12}\rceil
Pomnožite 2 i 3 da biste dobili 6.
\frac{1}{4}+\lceil \frac{27}{4}\times \frac{2}{27}+\frac{5}{12}\rceil
Saberite \frac{3}{4} i 6 da biste dobili \frac{27}{4}.
\frac{1}{4}+\lceil \frac{1}{2}+\frac{5}{12}\rceil
Pomnožite \frac{27}{4} i \frac{2}{27} da biste dobili \frac{1}{2}.
\frac{1}{4}+\lceil \frac{11}{12}\rceil
Saberite \frac{1}{2} i \frac{5}{12} da biste dobili \frac{11}{12}.
\frac{1}{4}+\lceil 0+\frac{11}{12}\rceil
Dijeljenje 11 sa 12 daje 0 i ostatak 11. Ponovo napišite \frac{11}{12} kao 0+\frac{11}{12}.
\frac{1}{4}+1
Maksimalna vrijednost realnog broja a je najmanji cijeli broj veći od ili jednak a. Maksimalna vrijednost od 0+\frac{11}{12} je 1.
\frac{5}{4}
Saberite \frac{1}{4} i 1 da biste dobili \frac{5}{4}.
Primjeri
kvadratna jednacina
{ x } ^ { 2 } - 4 x - 5 = 0
trigonometrija
4 \sin \theta \cos \theta = 2 \sin \theta
Linearna jednačina
y = 3x + 4
Aritmetika
699 * 533
Matrica
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultana jednačina
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferencijacija
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integracija
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Granice
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}