Preskoči na glavni sadržaj
Procijeni
Tick mark Image

Slični problemi iz web pretrage

Dijeliti

\frac{\sqrt{9}}{\sqrt{2}}+\sqrt{\frac{25}{8}}+\sqrt[3]{3000}-8\sqrt[3]{3}-\sqrt[3]{24}+\sqrt{\frac{1}{8}}
Ponovo napišite kvadratni korijen dijeljenja \sqrt{\frac{9}{2}} kao dijeljenje kvadratnih korijena \frac{\sqrt{9}}{\sqrt{2}}.
\frac{3}{\sqrt{2}}+\sqrt{\frac{25}{8}}+\sqrt[3]{3000}-8\sqrt[3]{3}-\sqrt[3]{24}+\sqrt{\frac{1}{8}}
Izračunajte kvadratni koren od 9 i dobijte 3.
\frac{3\sqrt{2}}{\left(\sqrt{2}\right)^{2}}+\sqrt{\frac{25}{8}}+\sqrt[3]{3000}-8\sqrt[3]{3}-\sqrt[3]{24}+\sqrt{\frac{1}{8}}
Racionalizirajte imenilac broja \frac{3}{\sqrt{2}} tako što ćete pomnožiti brojilac i imenilac sa \sqrt{2}.
\frac{3\sqrt{2}}{2}+\sqrt{\frac{25}{8}}+\sqrt[3]{3000}-8\sqrt[3]{3}-\sqrt[3]{24}+\sqrt{\frac{1}{8}}
Kvadrat broja \sqrt{2} je 2.
\frac{3\sqrt{2}}{2}+\frac{\sqrt{25}}{\sqrt{8}}+\sqrt[3]{3000}-8\sqrt[3]{3}-\sqrt[3]{24}+\sqrt{\frac{1}{8}}
Ponovo napišite kvadratni korijen dijeljenja \sqrt{\frac{25}{8}} kao dijeljenje kvadratnih korijena \frac{\sqrt{25}}{\sqrt{8}}.
\frac{3\sqrt{2}}{2}+\frac{5}{\sqrt{8}}+\sqrt[3]{3000}-8\sqrt[3]{3}-\sqrt[3]{24}+\sqrt{\frac{1}{8}}
Izračunajte kvadratni koren od 25 i dobijte 5.
\frac{3\sqrt{2}}{2}+\frac{5}{2\sqrt{2}}+\sqrt[3]{3000}-8\sqrt[3]{3}-\sqrt[3]{24}+\sqrt{\frac{1}{8}}
Faktorirajte 8=2^{2}\times 2. Ponovo napišite kvadratni korijen proizvoda \sqrt{2^{2}\times 2} kao proizvod kvadratnih korijena \sqrt{2^{2}}\sqrt{2}. Izračunajte kvadratni korijen od 2^{2}.
\frac{3\sqrt{2}}{2}+\frac{5\sqrt{2}}{2\left(\sqrt{2}\right)^{2}}+\sqrt[3]{3000}-8\sqrt[3]{3}-\sqrt[3]{24}+\sqrt{\frac{1}{8}}
Racionalizirajte imenilac broja \frac{5}{2\sqrt{2}} tako što ćete pomnožiti brojilac i imenilac sa \sqrt{2}.
\frac{3\sqrt{2}}{2}+\frac{5\sqrt{2}}{2\times 2}+\sqrt[3]{3000}-8\sqrt[3]{3}-\sqrt[3]{24}+\sqrt{\frac{1}{8}}
Kvadrat broja \sqrt{2} je 2.
\frac{3\sqrt{2}}{2}+\frac{5\sqrt{2}}{4}+\sqrt[3]{3000}-8\sqrt[3]{3}-\sqrt[3]{24}+\sqrt{\frac{1}{8}}
Pomnožite 2 i 2 da biste dobili 4.
\frac{11}{4}\sqrt{2}+\sqrt[3]{3000}-8\sqrt[3]{3}-\sqrt[3]{24}+\sqrt{\frac{1}{8}}
Kombinirajte \frac{3\sqrt{2}}{2} i \frac{5\sqrt{2}}{4} da biste dobili \frac{11}{4}\sqrt{2}.
\frac{11}{4}\sqrt{2}+\sqrt[3]{3000}-8\sqrt[3]{3}-\sqrt[3]{24}+\frac{\sqrt{1}}{\sqrt{8}}
Ponovo napišite kvadratni korijen dijeljenja \sqrt{\frac{1}{8}} kao dijeljenje kvadratnih korijena \frac{\sqrt{1}}{\sqrt{8}}.
\frac{11}{4}\sqrt{2}+\sqrt[3]{3000}-8\sqrt[3]{3}-\sqrt[3]{24}+\frac{1}{\sqrt{8}}
Izračunajte kvadratni koren od 1 i dobijte 1.
\frac{11}{4}\sqrt{2}+\sqrt[3]{3000}-8\sqrt[3]{3}-\sqrt[3]{24}+\frac{1}{2\sqrt{2}}
Faktorirajte 8=2^{2}\times 2. Ponovo napišite kvadratni korijen proizvoda \sqrt{2^{2}\times 2} kao proizvod kvadratnih korijena \sqrt{2^{2}}\sqrt{2}. Izračunajte kvadratni korijen od 2^{2}.
\frac{11}{4}\sqrt{2}+\sqrt[3]{3000}-8\sqrt[3]{3}-\sqrt[3]{24}+\frac{\sqrt{2}}{2\left(\sqrt{2}\right)^{2}}
Racionalizirajte imenilac broja \frac{1}{2\sqrt{2}} tako što ćete pomnožiti brojilac i imenilac sa \sqrt{2}.
\frac{11}{4}\sqrt{2}+\sqrt[3]{3000}-8\sqrt[3]{3}-\sqrt[3]{24}+\frac{\sqrt{2}}{2\times 2}
Kvadrat broja \sqrt{2} je 2.
\frac{11}{4}\sqrt{2}+\sqrt[3]{3000}-8\sqrt[3]{3}-\sqrt[3]{24}+\frac{\sqrt{2}}{4}
Pomnožite 2 i 2 da biste dobili 4.
3\sqrt{2}+\sqrt[3]{3000}-8\sqrt[3]{3}-\sqrt[3]{24}
Kombinirajte \frac{11}{4}\sqrt{2} i \frac{\sqrt{2}}{4} da biste dobili 3\sqrt{2}.