Procijeni
1260
Dijeliti
Kopirano u clipboard
\int 270\sqrt{x}\mathrm{d}x
Prvo procijenite neodređeni integral.
270\int \sqrt{x}\mathrm{d}x
Faktor konstantnog korištenja \int af\left(x\right)\mathrm{d}x=a\int f\left(x\right)\mathrm{d}x.
180x^{\frac{3}{2}}
Ponovo napišite \sqrt{x} kao x^{\frac{1}{2}}. Od \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} za k\neq -1, zamijenite \int x^{\frac{1}{2}}\mathrm{d}x sa \frac{x^{\frac{3}{2}}}{\frac{3}{2}}. Pojednostavite. Pomnožite 270 i \frac{2x^{\frac{3}{2}}}{3}.
180\times 4^{\frac{3}{2}}-180\times 1^{\frac{3}{2}}
Određeni integral je antiderivat izraza procjenjivan na gornjoj granici integracije minus antiderivat ocijenjen na donjoj granici integracije.
1260
Pojednostavite.
Primjeri
kvadratna jednacina
{ x } ^ { 2 } - 4 x - 5 = 0
trigonometrija
4 \sin \theta \cos \theta = 2 \sin \theta
Linearna jednačina
y = 3x + 4
Aritmetika
699 * 533
Matrica
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultana jednačina
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferencijacija
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integracija
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Granice
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}