Procijeni
0
Dijeliti
Kopirano u clipboard
\int _{-1}^{1}2x^{5}\mathrm{d}x
Da biste pomnožili stepene iste osnove, saberite eksponente. Saberite 2 i 3 da biste dobili 5.
\int 2x^{5}\mathrm{d}x
Prvo procijenite neodređeni integral.
2\int x^{5}\mathrm{d}x
Faktor konstantnog korištenja \int af\left(x\right)\mathrm{d}x=a\int f\left(x\right)\mathrm{d}x.
\frac{x^{6}}{3}
Od \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} za k\neq -1, zamijenite \int x^{5}\mathrm{d}x sa \frac{x^{6}}{6}. Pomnožite 2 i \frac{x^{6}}{6}.
\frac{1^{6}}{3}-\frac{\left(-1\right)^{6}}{3}
Određeni integral je antiderivat izraza procjenjivan na gornjoj granici integracije minus antiderivat ocijenjen na donjoj granici integracije.
0
Pojednostavite.
Primjeri
kvadratna jednacina
{ x } ^ { 2 } - 4 x - 5 = 0
trigonometrija
4 \sin \theta \cos \theta = 2 \sin \theta
Linearna jednačina
y = 3x + 4
Aritmetika
699 * 533
Matrica
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultana jednačina
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferencijacija
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integracija
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Granice
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}