Preskoči na glavni sadržaj
Procijeni
Tick mark Image
Razlikovanje u pogledu x
Tick mark Image

Slični problemi iz web pretrage

Dijeliti

\int \left(-\frac{1}{3}ab^{2}\right)^{2}-\left(2a^{2}\left(-3\right)b^{2}\right)^{2}-\left(\left(2ab^{2}\right)^{2}\left(-9\right)a^{2}+a^{2}b^{4}\right)\mathrm{d}x
Pomnožite a i a da biste dobili a^{2}.
\int \left(-\frac{1}{3}\right)^{2}a^{2}\left(b^{2}\right)^{2}-\left(2a^{2}\left(-3\right)b^{2}\right)^{2}-\left(\left(2ab^{2}\right)^{2}\left(-9\right)a^{2}+a^{2}b^{4}\right)\mathrm{d}x
Proširite \left(-\frac{1}{3}ab^{2}\right)^{2}.
\int \left(-\frac{1}{3}\right)^{2}a^{2}b^{4}-\left(2a^{2}\left(-3\right)b^{2}\right)^{2}-\left(\left(2ab^{2}\right)^{2}\left(-9\right)a^{2}+a^{2}b^{4}\right)\mathrm{d}x
Da biste podigli stepen na neki drugi stepen, pomnožite eksponente. Pomnožite 2 i 2 da biste dobili 4.
\int \frac{1}{9}a^{2}b^{4}-\left(2a^{2}\left(-3\right)b^{2}\right)^{2}-\left(\left(2ab^{2}\right)^{2}\left(-9\right)a^{2}+a^{2}b^{4}\right)\mathrm{d}x
Izračunajte -\frac{1}{3} stepen od 2 i dobijte \frac{1}{9}.
\int \frac{1}{9}a^{2}b^{4}-\left(-6a^{2}b^{2}\right)^{2}-\left(\left(2ab^{2}\right)^{2}\left(-9\right)a^{2}+a^{2}b^{4}\right)\mathrm{d}x
Pomnožite 2 i -3 da biste dobili -6.
\int \frac{1}{9}a^{2}b^{4}-\left(-6\right)^{2}\left(a^{2}\right)^{2}\left(b^{2}\right)^{2}-\left(\left(2ab^{2}\right)^{2}\left(-9\right)a^{2}+a^{2}b^{4}\right)\mathrm{d}x
Proširite \left(-6a^{2}b^{2}\right)^{2}.
\int \frac{1}{9}a^{2}b^{4}-\left(-6\right)^{2}a^{4}\left(b^{2}\right)^{2}-\left(\left(2ab^{2}\right)^{2}\left(-9\right)a^{2}+a^{2}b^{4}\right)\mathrm{d}x
Da biste podigli stepen na neki drugi stepen, pomnožite eksponente. Pomnožite 2 i 2 da biste dobili 4.
\int \frac{1}{9}a^{2}b^{4}-\left(-6\right)^{2}a^{4}b^{4}-\left(\left(2ab^{2}\right)^{2}\left(-9\right)a^{2}+a^{2}b^{4}\right)\mathrm{d}x
Da biste podigli stepen na neki drugi stepen, pomnožite eksponente. Pomnožite 2 i 2 da biste dobili 4.
\int \frac{1}{9}a^{2}b^{4}-36a^{4}b^{4}-\left(\left(2ab^{2}\right)^{2}\left(-9\right)a^{2}+a^{2}b^{4}\right)\mathrm{d}x
Izračunajte -6 stepen od 2 i dobijte 36.
\int \frac{1}{9}a^{2}b^{4}-36a^{4}b^{4}-\left(2^{2}a^{2}\left(b^{2}\right)^{2}\left(-9\right)a^{2}+a^{2}b^{4}\right)\mathrm{d}x
Proširite \left(2ab^{2}\right)^{2}.
\int \frac{1}{9}a^{2}b^{4}-36a^{4}b^{4}-\left(2^{2}a^{2}b^{4}\left(-9\right)a^{2}+a^{2}b^{4}\right)\mathrm{d}x
Da biste podigli stepen na neki drugi stepen, pomnožite eksponente. Pomnožite 2 i 2 da biste dobili 4.
\int \frac{1}{9}a^{2}b^{4}-36a^{4}b^{4}-\left(4a^{2}b^{4}\left(-9\right)a^{2}+a^{2}b^{4}\right)\mathrm{d}x
Izračunajte 2 stepen od 2 i dobijte 4.
\int \frac{1}{9}a^{2}b^{4}-36a^{4}b^{4}-\left(-36a^{2}b^{4}a^{2}+a^{2}b^{4}\right)\mathrm{d}x
Pomnožite 4 i -9 da biste dobili -36.
\int \frac{1}{9}a^{2}b^{4}-36a^{4}b^{4}-\left(-36a^{4}b^{4}+a^{2}b^{4}\right)\mathrm{d}x
Da biste pomnožili stepene iste osnove, saberite eksponente. Saberite 2 i 2 da biste dobili 4.
\int \frac{1}{9}a^{2}b^{4}-36a^{4}b^{4}+36a^{4}b^{4}-a^{2}b^{4}\mathrm{d}x
Da biste pronašli suprotnu vrijednost od -36a^{4}b^{4}+a^{2}b^{4}, pronađite suprotnu vrijednost svakog izraza.
\int \frac{1}{9}a^{2}b^{4}-a^{2}b^{4}\mathrm{d}x
Kombinirajte -36a^{4}b^{4} i 36a^{4}b^{4} da biste dobili 0.
\int -\frac{8}{9}a^{2}b^{4}\mathrm{d}x
Kombinirajte \frac{1}{9}a^{2}b^{4} i -a^{2}b^{4} da biste dobili -\frac{8}{9}a^{2}b^{4}.
\left(-\frac{8a^{2}b^{4}}{9}\right)x
Pronađite integral -\frac{8a^{2}b^{4}}{9} koristeći tablicu pravila zajedničkih integrala \int a\mathrm{d}x=ax.
-\frac{8a^{2}b^{4}x}{9}
Pojednostavite.
-\frac{8a^{2}b^{4}x}{9}+С
Ako je F\left(x\right) antiderivat f\left(x\right), onda je set svih antiderivata f\left(x\right) dat F\left(x\right)+C. Stoga, dodajte konstantnu integraciju C\in \mathrm{R} na rezultat.