Preskoči na glavni sadržaj
Procijeni
Tick mark Image
Razlikovanje u pogledu x
Tick mark Image

Slični problemi iz web pretrage

Dijeliti

\int \frac{\left(2x^{2}-x+3\right)x^{3}}{x^{2}}\mathrm{d}x
Faktorirajte izraze koji nisu već faktorirani u \frac{3x^{3}-x^{4}+2x^{5}}{x^{2}}.
\int x\left(2x^{2}-x+3\right)\mathrm{d}x
Otkaži x^{2} u brojiocu i imeniocu.
\int 2x^{3}-x^{2}+3x\mathrm{d}x
Razvijte izraz.
\int 2x^{3}\mathrm{d}x+\int -x^{2}\mathrm{d}x+\int 3x\mathrm{d}x
Integrirajte zbir izraz po izraz.
2\int x^{3}\mathrm{d}x-\int x^{2}\mathrm{d}x+3\int x\mathrm{d}x
Izbacite konstantu u svakom od izraza.
\frac{x^{4}}{2}-\int x^{2}\mathrm{d}x+3\int x\mathrm{d}x
Od \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} za k\neq -1, zamijenite \int x^{3}\mathrm{d}x sa \frac{x^{4}}{4}. Pomnožite 2 i \frac{x^{4}}{4}.
\frac{x^{4}}{2}-\frac{x^{3}}{3}+3\int x\mathrm{d}x
Od \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} za k\neq -1, zamijenite \int x^{2}\mathrm{d}x sa \frac{x^{3}}{3}. Pomnožite -1 i \frac{x^{3}}{3}.
\frac{x^{4}}{2}-\frac{x^{3}}{3}+\frac{3x^{2}}{2}
Od \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} za k\neq -1, zamijenite \int x\mathrm{d}x sa \frac{x^{2}}{2}. Pomnožite 3 i \frac{x^{2}}{2}.
\frac{3x^{2}}{2}-\frac{x^{3}}{3}+\frac{x^{4}}{2}
Pojednostavite.
\frac{3x^{2}}{2}-\frac{x^{3}}{3}+\frac{x^{4}}{2}+С
Ako je F\left(x\right) antiderivat f\left(x\right), onda je set svih antiderivata f\left(x\right) dat F\left(x\right)+C. Stoga, dodajte konstantnu integraciju C\in \mathrm{R} na rezultat.