Preskoči na glavni sadržaj
Procijeni
Tick mark Image

Slični problemi iz web pretrage

Dijeliti

\frac{\left(3-\sqrt{2}\right)\left(1+\sqrt{5}\right)}{\left(1-\sqrt{5}\right)\left(1+\sqrt{5}\right)}
Racionalizirajte imenilac broja \frac{3-\sqrt{2}}{1-\sqrt{5}} tako što ćete pomnožiti brojilac i imenilac sa 1+\sqrt{5}.
\frac{\left(3-\sqrt{2}\right)\left(1+\sqrt{5}\right)}{1^{2}-\left(\sqrt{5}\right)^{2}}
Razmotrite \left(1-\sqrt{5}\right)\left(1+\sqrt{5}\right). Množenje se može transformirati u razliku kvadrata pomoću pravila: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(3-\sqrt{2}\right)\left(1+\sqrt{5}\right)}{1-5}
Izračunajte kvadrat od 1. Izračunajte kvadrat od \sqrt{5}.
\frac{\left(3-\sqrt{2}\right)\left(1+\sqrt{5}\right)}{-4}
Oduzmite 5 od 1 da biste dobili -4.
\frac{3+3\sqrt{5}-\sqrt{2}-\sqrt{2}\sqrt{5}}{-4}
Primijenite distributivno svojstvo tako što ćete pomnožiti svaki izraz od 3-\sqrt{2} svakim izrazom od 1+\sqrt{5}.
\frac{3+3\sqrt{5}-\sqrt{2}-\sqrt{10}}{-4}
Da biste pomnožili \sqrt{2} i \sqrt{5}, pomnožite brojeve u okviru kvadratnog korijena.
\frac{-3-3\sqrt{5}+\sqrt{2}+\sqrt{10}}{4}
Pomnožite brojilac i imenilac sa -1.