Preskoči na glavni sadržaj
Procijeni
Tick mark Image
Proširi
Tick mark Image
Graf

Slični problemi iz web pretrage

Dijeliti

\frac{\frac{\left(x+4\right)\left(x+4\right)}{\left(x+3\right)\left(x+4\right)}-\frac{\left(x-3\right)\left(x+3\right)}{\left(x+3\right)\left(x+4\right)}}{\frac{14}{x^{2}+7x+12}}
Da biste izvršili zbrajanje ili oduzimanje izraza, rastavite ih kako bi im nazivnici bili isti. Najmanji zajednički množilac brojeva x+3 i x+4 je \left(x+3\right)\left(x+4\right). Pomnožite \frac{x+4}{x+3} i \frac{x+4}{x+4}. Pomnožite \frac{x-3}{x+4} i \frac{x+3}{x+3}.
\frac{\frac{\left(x+4\right)\left(x+4\right)-\left(x-3\right)\left(x+3\right)}{\left(x+3\right)\left(x+4\right)}}{\frac{14}{x^{2}+7x+12}}
Pošto \frac{\left(x+4\right)\left(x+4\right)}{\left(x+3\right)\left(x+4\right)} i \frac{\left(x-3\right)\left(x+3\right)}{\left(x+3\right)\left(x+4\right)} imaju isti imenilac, oduzmite ih tako što ćete oduzeti njihove brojioce.
\frac{\frac{x^{2}+4x+4x+16-x^{2}-3x+3x+9}{\left(x+3\right)\left(x+4\right)}}{\frac{14}{x^{2}+7x+12}}
Izvršite množenja u \left(x+4\right)\left(x+4\right)-\left(x-3\right)\left(x+3\right).
\frac{\frac{8x+25}{\left(x+3\right)\left(x+4\right)}}{\frac{14}{x^{2}+7x+12}}
Kombinirajte slične izraze u x^{2}+4x+4x+16-x^{2}-3x+3x+9.
\frac{\left(8x+25\right)\left(x^{2}+7x+12\right)}{\left(x+3\right)\left(x+4\right)\times 14}
Podijelite \frac{8x+25}{\left(x+3\right)\left(x+4\right)} sa \frac{14}{x^{2}+7x+12} tako što ćete pomnožiti \frac{8x+25}{\left(x+3\right)\left(x+4\right)} recipročnom vrijednošću od \frac{14}{x^{2}+7x+12}.
\frac{\left(x+3\right)\left(x+4\right)\left(8x+25\right)}{14\left(x+3\right)\left(x+4\right)}
Faktorirajte izraze koji nisu već faktorirani.
\frac{8x+25}{14}
Otkaži \left(x+3\right)\left(x+4\right) u brojiocu i imeniocu.
\frac{\frac{\left(x+4\right)\left(x+4\right)}{\left(x+3\right)\left(x+4\right)}-\frac{\left(x-3\right)\left(x+3\right)}{\left(x+3\right)\left(x+4\right)}}{\frac{14}{x^{2}+7x+12}}
Da biste izvršili zbrajanje ili oduzimanje izraza, rastavite ih kako bi im nazivnici bili isti. Najmanji zajednički množilac brojeva x+3 i x+4 je \left(x+3\right)\left(x+4\right). Pomnožite \frac{x+4}{x+3} i \frac{x+4}{x+4}. Pomnožite \frac{x-3}{x+4} i \frac{x+3}{x+3}.
\frac{\frac{\left(x+4\right)\left(x+4\right)-\left(x-3\right)\left(x+3\right)}{\left(x+3\right)\left(x+4\right)}}{\frac{14}{x^{2}+7x+12}}
Pošto \frac{\left(x+4\right)\left(x+4\right)}{\left(x+3\right)\left(x+4\right)} i \frac{\left(x-3\right)\left(x+3\right)}{\left(x+3\right)\left(x+4\right)} imaju isti imenilac, oduzmite ih tako što ćete oduzeti njihove brojioce.
\frac{\frac{x^{2}+4x+4x+16-x^{2}-3x+3x+9}{\left(x+3\right)\left(x+4\right)}}{\frac{14}{x^{2}+7x+12}}
Izvršite množenja u \left(x+4\right)\left(x+4\right)-\left(x-3\right)\left(x+3\right).
\frac{\frac{8x+25}{\left(x+3\right)\left(x+4\right)}}{\frac{14}{x^{2}+7x+12}}
Kombinirajte slične izraze u x^{2}+4x+4x+16-x^{2}-3x+3x+9.
\frac{\left(8x+25\right)\left(x^{2}+7x+12\right)}{\left(x+3\right)\left(x+4\right)\times 14}
Podijelite \frac{8x+25}{\left(x+3\right)\left(x+4\right)} sa \frac{14}{x^{2}+7x+12} tako što ćete pomnožiti \frac{8x+25}{\left(x+3\right)\left(x+4\right)} recipročnom vrijednošću od \frac{14}{x^{2}+7x+12}.
\frac{\left(x+3\right)\left(x+4\right)\left(8x+25\right)}{14\left(x+3\right)\left(x+4\right)}
Faktorirajte izraze koji nisu već faktorirani.
\frac{8x+25}{14}
Otkaži \left(x+3\right)\left(x+4\right) u brojiocu i imeniocu.