Preskoči na glavni sadržaj
Riješite za x
Tick mark Image
Graf

Slični problemi iz web pretrage

Dijeliti

\left(x+2\right)\left(x-4\right)=1x
Promjenjiva x ne može biti jednaka nijednoj od vrijednosti -3,-2 zato što dijeljenje nulom nije definirano. Pomnožite obje strane jednačine sa \left(x+2\right)\left(x+3\right), najmanjim zajedničkim sadržaocem broja x+3,x^{2}+5x+6.
x^{2}-2x-8=1x
Koristite svojstvo distributivnosti da biste pomnožili x+2 s x-4 i kombinirali slične pojmove.
x^{2}-2x-8-x=0
Oduzmite 1x s obje strane.
x^{2}-3x-8=0
Kombinirajte -2x i -x da biste dobili -3x.
x=\frac{-\left(-3\right)±\sqrt{\left(-3\right)^{2}-4\left(-8\right)}}{2}
Ova jednačina je u standardnom obliku: ax^{2}+bx+c=0. Zamijenite 1 i a, -3 i b, kao i -8 i c u kvadratnoj formuli, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-3\right)±\sqrt{9-4\left(-8\right)}}{2}
Izračunajte kvadrat od -3.
x=\frac{-\left(-3\right)±\sqrt{9+32}}{2}
Pomnožite -4 i -8.
x=\frac{-\left(-3\right)±\sqrt{41}}{2}
Saberite 9 i 32.
x=\frac{3±\sqrt{41}}{2}
Opozit broja -3 je 3.
x=\frac{\sqrt{41}+3}{2}
Sada riješite jednačinu x=\frac{3±\sqrt{41}}{2} kada je ± plus. Saberite 3 i \sqrt{41}.
x=\frac{3-\sqrt{41}}{2}
Sada riješite jednačinu x=\frac{3±\sqrt{41}}{2} kada je ± minus. Oduzmite \sqrt{41} od 3.
x=\frac{\sqrt{41}+3}{2} x=\frac{3-\sqrt{41}}{2}
Jednačina je riješena.
\left(x+2\right)\left(x-4\right)=1x
Promjenjiva x ne može biti jednaka nijednoj od vrijednosti -3,-2 zato što dijeljenje nulom nije definirano. Pomnožite obje strane jednačine sa \left(x+2\right)\left(x+3\right), najmanjim zajedničkim sadržaocem broja x+3,x^{2}+5x+6.
x^{2}-2x-8=1x
Koristite svojstvo distributivnosti da biste pomnožili x+2 s x-4 i kombinirali slične pojmove.
x^{2}-2x-8-x=0
Oduzmite 1x s obje strane.
x^{2}-3x-8=0
Kombinirajte -2x i -x da biste dobili -3x.
x^{2}-3x=8
Dodajte 8 na obje strane. Bilo šta plus nula daje sebe.
x^{2}-3x+\left(-\frac{3}{2}\right)^{2}=8+\left(-\frac{3}{2}\right)^{2}
Podijelite -3, koeficijent izraza x, sa 2 da biste dobili -\frac{3}{2}. Zatim dodajte kvadrat od -\frac{3}{2} na obje strane jednačine. Ovaj korak čini lijevu stranu jednačine savršenim kvadratom.
x^{2}-3x+\frac{9}{4}=8+\frac{9}{4}
Izračunajte kvadrat od -\frac{3}{2} tako što ćete izračunati kvadrat od brojioca i imenioca razlomka.
x^{2}-3x+\frac{9}{4}=\frac{41}{4}
Saberite 8 i \frac{9}{4}.
\left(x-\frac{3}{2}\right)^{2}=\frac{41}{4}
Faktor x^{2}-3x+\frac{9}{4}. Generalno, kada je x^{2}+bx+c savršen kvadrat, uvijek se može uračunati kao \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{3}{2}\right)^{2}}=\sqrt{\frac{41}{4}}
Izračunajte kvadratni korijen od obje strane jednačine.
x-\frac{3}{2}=\frac{\sqrt{41}}{2} x-\frac{3}{2}=-\frac{\sqrt{41}}{2}
Pojednostavite.
x=\frac{\sqrt{41}+3}{2} x=\frac{3-\sqrt{41}}{2}
Dodajte \frac{3}{2} na obje strane jednačine.