Preskoči na glavni sadržaj
Procijeni
Tick mark Image
Proširi
Tick mark Image
Graf

Slični problemi iz web pretrage

Dijeliti

\frac{\frac{\left(x-4\right)\left(2x+3\right)}{2x+3}+\frac{9}{2x+3}}{x+3-\frac{5}{2x+3}}
Da biste izvršili zbrajanje ili oduzimanje izraza, rastavite ih kako bi im nazivnici bili isti. Pomnožite x-4 i \frac{2x+3}{2x+3}.
\frac{\frac{\left(x-4\right)\left(2x+3\right)+9}{2x+3}}{x+3-\frac{5}{2x+3}}
Pošto \frac{\left(x-4\right)\left(2x+3\right)}{2x+3} i \frac{9}{2x+3} imaju isti imenilac, saberite ih tako što ćete sabrati njihove brojioce.
\frac{\frac{2x^{2}+3x-8x-12+9}{2x+3}}{x+3-\frac{5}{2x+3}}
Izvršite množenja u \left(x-4\right)\left(2x+3\right)+9.
\frac{\frac{2x^{2}-5x-3}{2x+3}}{x+3-\frac{5}{2x+3}}
Kombinirajte slične izraze u 2x^{2}+3x-8x-12+9.
\frac{\frac{2x^{2}-5x-3}{2x+3}}{\frac{\left(x+3\right)\left(2x+3\right)}{2x+3}-\frac{5}{2x+3}}
Da biste izvršili zbrajanje ili oduzimanje izraza, rastavite ih kako bi im nazivnici bili isti. Pomnožite x+3 i \frac{2x+3}{2x+3}.
\frac{\frac{2x^{2}-5x-3}{2x+3}}{\frac{\left(x+3\right)\left(2x+3\right)-5}{2x+3}}
Pošto \frac{\left(x+3\right)\left(2x+3\right)}{2x+3} i \frac{5}{2x+3} imaju isti imenilac, oduzmite ih tako što ćete oduzeti njihove brojioce.
\frac{\frac{2x^{2}-5x-3}{2x+3}}{\frac{2x^{2}+3x+6x+9-5}{2x+3}}
Izvršite množenja u \left(x+3\right)\left(2x+3\right)-5.
\frac{\frac{2x^{2}-5x-3}{2x+3}}{\frac{2x^{2}+9x+4}{2x+3}}
Kombinirajte slične izraze u 2x^{2}+3x+6x+9-5.
\frac{\left(2x^{2}-5x-3\right)\left(2x+3\right)}{\left(2x+3\right)\left(2x^{2}+9x+4\right)}
Podijelite \frac{2x^{2}-5x-3}{2x+3} sa \frac{2x^{2}+9x+4}{2x+3} tako što ćete pomnožiti \frac{2x^{2}-5x-3}{2x+3} recipročnom vrijednošću od \frac{2x^{2}+9x+4}{2x+3}.
\frac{2x^{2}-5x-3}{2x^{2}+9x+4}
Otkaži 2x+3 u brojiocu i imeniocu.
\frac{\left(x-3\right)\left(2x+1\right)}{\left(x+4\right)\left(2x+1\right)}
Faktorirajte izraze koji nisu već faktorirani.
\frac{x-3}{x+4}
Otkaži 2x+1 u brojiocu i imeniocu.
\frac{\frac{\left(x-4\right)\left(2x+3\right)}{2x+3}+\frac{9}{2x+3}}{x+3-\frac{5}{2x+3}}
Da biste izvršili zbrajanje ili oduzimanje izraza, rastavite ih kako bi im nazivnici bili isti. Pomnožite x-4 i \frac{2x+3}{2x+3}.
\frac{\frac{\left(x-4\right)\left(2x+3\right)+9}{2x+3}}{x+3-\frac{5}{2x+3}}
Pošto \frac{\left(x-4\right)\left(2x+3\right)}{2x+3} i \frac{9}{2x+3} imaju isti imenilac, saberite ih tako što ćete sabrati njihove brojioce.
\frac{\frac{2x^{2}+3x-8x-12+9}{2x+3}}{x+3-\frac{5}{2x+3}}
Izvršite množenja u \left(x-4\right)\left(2x+3\right)+9.
\frac{\frac{2x^{2}-5x-3}{2x+3}}{x+3-\frac{5}{2x+3}}
Kombinirajte slične izraze u 2x^{2}+3x-8x-12+9.
\frac{\frac{2x^{2}-5x-3}{2x+3}}{\frac{\left(x+3\right)\left(2x+3\right)}{2x+3}-\frac{5}{2x+3}}
Da biste izvršili zbrajanje ili oduzimanje izraza, rastavite ih kako bi im nazivnici bili isti. Pomnožite x+3 i \frac{2x+3}{2x+3}.
\frac{\frac{2x^{2}-5x-3}{2x+3}}{\frac{\left(x+3\right)\left(2x+3\right)-5}{2x+3}}
Pošto \frac{\left(x+3\right)\left(2x+3\right)}{2x+3} i \frac{5}{2x+3} imaju isti imenilac, oduzmite ih tako što ćete oduzeti njihove brojioce.
\frac{\frac{2x^{2}-5x-3}{2x+3}}{\frac{2x^{2}+3x+6x+9-5}{2x+3}}
Izvršite množenja u \left(x+3\right)\left(2x+3\right)-5.
\frac{\frac{2x^{2}-5x-3}{2x+3}}{\frac{2x^{2}+9x+4}{2x+3}}
Kombinirajte slične izraze u 2x^{2}+3x+6x+9-5.
\frac{\left(2x^{2}-5x-3\right)\left(2x+3\right)}{\left(2x+3\right)\left(2x^{2}+9x+4\right)}
Podijelite \frac{2x^{2}-5x-3}{2x+3} sa \frac{2x^{2}+9x+4}{2x+3} tako što ćete pomnožiti \frac{2x^{2}-5x-3}{2x+3} recipročnom vrijednošću od \frac{2x^{2}+9x+4}{2x+3}.
\frac{2x^{2}-5x-3}{2x^{2}+9x+4}
Otkaži 2x+3 u brojiocu i imeniocu.
\frac{\left(x-3\right)\left(2x+1\right)}{\left(x+4\right)\left(2x+1\right)}
Faktorirajte izraze koji nisu već faktorirani.
\frac{x-3}{x+4}
Otkaži 2x+1 u brojiocu i imeniocu.