Preskoči na glavni sadržaj
Procijeni
Tick mark Image
Proširi
Tick mark Image
Graf

Dijeliti

\frac{\left(x^{2}-x-12\right)\left(x^{2}-2x-8\right)}{\left(x^{2}-3x-10\right)\left(x^{2}-9x+20\right)}\times \frac{x-5}{x+3}
Podijelite \frac{x^{2}-x-12}{x^{2}-3x-10} sa \frac{x^{2}-9x+20}{x^{2}-2x-8} tako što ćete pomnožiti \frac{x^{2}-x-12}{x^{2}-3x-10} recipročnom vrijednošću od \frac{x^{2}-9x+20}{x^{2}-2x-8}.
\frac{\left(x+2\right)\left(x+3\right)\left(x-4\right)^{2}}{\left(x-4\right)\left(x+2\right)\left(x-5\right)^{2}}\times \frac{x-5}{x+3}
Faktorirajte izraze koji nisu već faktorirani u \frac{\left(x^{2}-x-12\right)\left(x^{2}-2x-8\right)}{\left(x^{2}-3x-10\right)\left(x^{2}-9x+20\right)}.
\frac{\left(x-4\right)\left(x+3\right)}{\left(x-5\right)^{2}}\times \frac{x-5}{x+3}
Otkaži \left(x-4\right)\left(x+2\right) u brojiocu i imeniocu.
\frac{\left(x-4\right)\left(x+3\right)\left(x-5\right)}{\left(x-5\right)^{2}\left(x+3\right)}
Pomnožite \frac{\left(x-4\right)\left(x+3\right)}{\left(x-5\right)^{2}} i \frac{x-5}{x+3} tako što ćete pomnožiti brojilac s brojiocem i imenilac s imeniocem.
\frac{x-4}{x-5}
Otkaži \left(x-5\right)\left(x+3\right) u brojiocu i imeniocu.
\frac{\left(x^{2}-x-12\right)\left(x^{2}-2x-8\right)}{\left(x^{2}-3x-10\right)\left(x^{2}-9x+20\right)}\times \frac{x-5}{x+3}
Podijelite \frac{x^{2}-x-12}{x^{2}-3x-10} sa \frac{x^{2}-9x+20}{x^{2}-2x-8} tako što ćete pomnožiti \frac{x^{2}-x-12}{x^{2}-3x-10} recipročnom vrijednošću od \frac{x^{2}-9x+20}{x^{2}-2x-8}.
\frac{\left(x+2\right)\left(x+3\right)\left(x-4\right)^{2}}{\left(x-4\right)\left(x+2\right)\left(x-5\right)^{2}}\times \frac{x-5}{x+3}
Faktorirajte izraze koji nisu već faktorirani u \frac{\left(x^{2}-x-12\right)\left(x^{2}-2x-8\right)}{\left(x^{2}-3x-10\right)\left(x^{2}-9x+20\right)}.
\frac{\left(x-4\right)\left(x+3\right)}{\left(x-5\right)^{2}}\times \frac{x-5}{x+3}
Otkaži \left(x-4\right)\left(x+2\right) u brojiocu i imeniocu.
\frac{\left(x-4\right)\left(x+3\right)\left(x-5\right)}{\left(x-5\right)^{2}\left(x+3\right)}
Pomnožite \frac{\left(x-4\right)\left(x+3\right)}{\left(x-5\right)^{2}} i \frac{x-5}{x+3} tako što ćete pomnožiti brojilac s brojiocem i imenilac s imeniocem.
\frac{x-4}{x-5}
Otkaži \left(x-5\right)\left(x+3\right) u brojiocu i imeniocu.