Riješite za x (complex solution)
x=-\frac{\sqrt{2}i\left(\cos(\theta )\right)^{-\frac{1}{2}}\sqrt{2\left(-6\cos(\theta )-1\right)}}{2}
x=\frac{\sqrt{2}i\left(\cos(\theta )\right)^{-\frac{1}{2}}\sqrt{2\left(-6\cos(\theta )-1\right)}}{2}\text{, }\nexists n_{1}\in \mathrm{Z}\text{ : }\theta =2\pi n_{1}\text{ and }\nexists n_{2}\in \mathrm{Z}\text{ : }\theta =\pi n_{2}+\frac{\pi }{2}
Riješite za x
x=\sqrt{\frac{1}{\cos(\theta )}+6}
x=-\sqrt{\frac{1}{\cos(\theta )}+6}\text{, }\exists n_{2}\in \mathrm{Z}\text{ : }\left(\left(\theta >\frac{\pi \left(4n_{2}+3\right)}{2}\text{ and }\theta <2\pi \left(n_{2}+1\right)\right)\text{ or }\left(\theta >2\pi n_{2}\text{ and }\theta <\frac{\pi \left(4n_{2}+1\right)}{2}\right)\right)\text{ or }\exists n_{1}\in \mathrm{Z}\text{ : }\left(\theta \geq \frac{4\pi n_{1}+\pi +2\arcsin(\frac{1}{6})}{2}\text{ and }\theta \leq \frac{4\pi n_{1}+3\pi -2\arcsin(\frac{1}{6})}{2}\right)
Riješite za θ
\theta =-\arccos(\frac{1}{x^{2}-6})+2\pi n_{1}\text{, }n_{1}\in \mathrm{Z}
\theta =\arccos(\frac{1}{x^{2}-6})+2\pi n_{2}\text{, }n_{2}\in \mathrm{Z}\text{, }|x|\leq \sqrt{5}\text{ or }|x|>\sqrt{7}
Graf
Dijeliti
Kopirano u clipboard
Primjeri
kvadratna jednacina
{ x } ^ { 2 } - 4 x - 5 = 0
trigonometrija
4 \sin \theta \cos \theta = 2 \sin \theta
Linearna jednačina
y = 3x + 4
Aritmetika
699 * 533
Matrica
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultana jednačina
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferencijacija
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integracija
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Granice
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}