Preskoči na glavni sadržaj
Procijeni
Tick mark Image
Proširi
Tick mark Image
Graf

Slični problemi iz web pretrage

Dijeliti

\frac{\left(x+2\right)\left(x+2\right)}{\left(x+1\right)\left(x+2\right)}+\frac{\left(x+1\right)\left(x+1\right)}{\left(x+1\right)\left(x+2\right)}-\frac{x+5}{x+2}
Da biste izvršili zbrajanje ili oduzimanje izraza, rastavite ih kako bi im nazivnici bili isti. Najmanji zajednički množilac brojeva x+1 i x+2 je \left(x+1\right)\left(x+2\right). Pomnožite \frac{x+2}{x+1} i \frac{x+2}{x+2}. Pomnožite \frac{x+1}{x+2} i \frac{x+1}{x+1}.
\frac{\left(x+2\right)\left(x+2\right)+\left(x+1\right)\left(x+1\right)}{\left(x+1\right)\left(x+2\right)}-\frac{x+5}{x+2}
Pošto \frac{\left(x+2\right)\left(x+2\right)}{\left(x+1\right)\left(x+2\right)} i \frac{\left(x+1\right)\left(x+1\right)}{\left(x+1\right)\left(x+2\right)} imaju isti imenilac, saberite ih tako što ćete sabrati njihove brojioce.
\frac{x^{2}+2x+2x+4+x^{2}+x+x+1}{\left(x+1\right)\left(x+2\right)}-\frac{x+5}{x+2}
Izvršite množenja u \left(x+2\right)\left(x+2\right)+\left(x+1\right)\left(x+1\right).
\frac{2x^{2}+6x+5}{\left(x+1\right)\left(x+2\right)}-\frac{x+5}{x+2}
Kombinirajte slične izraze u x^{2}+2x+2x+4+x^{2}+x+x+1.
\frac{2x^{2}+6x+5}{\left(x+1\right)\left(x+2\right)}-\frac{\left(x+5\right)\left(x+1\right)}{\left(x+1\right)\left(x+2\right)}
Da biste izvršili zbrajanje ili oduzimanje izraza, rastavite ih kako bi im nazivnici bili isti. Najmanji zajednički množilac brojeva \left(x+1\right)\left(x+2\right) i x+2 je \left(x+1\right)\left(x+2\right). Pomnožite \frac{x+5}{x+2} i \frac{x+1}{x+1}.
\frac{2x^{2}+6x+5-\left(x+5\right)\left(x+1\right)}{\left(x+1\right)\left(x+2\right)}
Pošto \frac{2x^{2}+6x+5}{\left(x+1\right)\left(x+2\right)} i \frac{\left(x+5\right)\left(x+1\right)}{\left(x+1\right)\left(x+2\right)} imaju isti imenilac, oduzmite ih tako što ćete oduzeti njihove brojioce.
\frac{2x^{2}+6x+5-x^{2}-x-5x-5}{\left(x+1\right)\left(x+2\right)}
Izvršite množenja u 2x^{2}+6x+5-\left(x+5\right)\left(x+1\right).
\frac{x^{2}}{\left(x+1\right)\left(x+2\right)}
Kombinirajte slične izraze u 2x^{2}+6x+5-x^{2}-x-5x-5.
\frac{x^{2}}{x^{2}+3x+2}
Proširite \left(x+1\right)\left(x+2\right).
\frac{\left(x+2\right)\left(x+2\right)}{\left(x+1\right)\left(x+2\right)}+\frac{\left(x+1\right)\left(x+1\right)}{\left(x+1\right)\left(x+2\right)}-\frac{x+5}{x+2}
Da biste izvršili zbrajanje ili oduzimanje izraza, rastavite ih kako bi im nazivnici bili isti. Najmanji zajednički množilac brojeva x+1 i x+2 je \left(x+1\right)\left(x+2\right). Pomnožite \frac{x+2}{x+1} i \frac{x+2}{x+2}. Pomnožite \frac{x+1}{x+2} i \frac{x+1}{x+1}.
\frac{\left(x+2\right)\left(x+2\right)+\left(x+1\right)\left(x+1\right)}{\left(x+1\right)\left(x+2\right)}-\frac{x+5}{x+2}
Pošto \frac{\left(x+2\right)\left(x+2\right)}{\left(x+1\right)\left(x+2\right)} i \frac{\left(x+1\right)\left(x+1\right)}{\left(x+1\right)\left(x+2\right)} imaju isti imenilac, saberite ih tako što ćete sabrati njihove brojioce.
\frac{x^{2}+2x+2x+4+x^{2}+x+x+1}{\left(x+1\right)\left(x+2\right)}-\frac{x+5}{x+2}
Izvršite množenja u \left(x+2\right)\left(x+2\right)+\left(x+1\right)\left(x+1\right).
\frac{2x^{2}+6x+5}{\left(x+1\right)\left(x+2\right)}-\frac{x+5}{x+2}
Kombinirajte slične izraze u x^{2}+2x+2x+4+x^{2}+x+x+1.
\frac{2x^{2}+6x+5}{\left(x+1\right)\left(x+2\right)}-\frac{\left(x+5\right)\left(x+1\right)}{\left(x+1\right)\left(x+2\right)}
Da biste izvršili zbrajanje ili oduzimanje izraza, rastavite ih kako bi im nazivnici bili isti. Najmanji zajednički množilac brojeva \left(x+1\right)\left(x+2\right) i x+2 je \left(x+1\right)\left(x+2\right). Pomnožite \frac{x+5}{x+2} i \frac{x+1}{x+1}.
\frac{2x^{2}+6x+5-\left(x+5\right)\left(x+1\right)}{\left(x+1\right)\left(x+2\right)}
Pošto \frac{2x^{2}+6x+5}{\left(x+1\right)\left(x+2\right)} i \frac{\left(x+5\right)\left(x+1\right)}{\left(x+1\right)\left(x+2\right)} imaju isti imenilac, oduzmite ih tako što ćete oduzeti njihove brojioce.
\frac{2x^{2}+6x+5-x^{2}-x-5x-5}{\left(x+1\right)\left(x+2\right)}
Izvršite množenja u 2x^{2}+6x+5-\left(x+5\right)\left(x+1\right).
\frac{x^{2}}{\left(x+1\right)\left(x+2\right)}
Kombinirajte slične izraze u 2x^{2}+6x+5-x^{2}-x-5x-5.
\frac{x^{2}}{x^{2}+3x+2}
Proširite \left(x+1\right)\left(x+2\right).