Preskoči na glavni sadržaj
Procijeni
Tick mark Image
Realni dio
Tick mark Image

Slični problemi iz web pretrage

Dijeliti

\frac{i\left(3+4i\right)}{3^{2}-4^{2}i^{2}}
Množenje se može transformirati u razliku kvadrata pomoću pravila: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{i\left(3+4i\right)}{25}
Prema definiciji, i^{2} je -1. Izračunajte imenilac.
\frac{3i+4i^{2}}{25}
Pomnožite i i 3+4i.
\frac{3i+4\left(-1\right)}{25}
Prema definiciji, i^{2} je -1.
\frac{-4+3i}{25}
Izvršite množenja u 3i+4\left(-1\right). Prerasporedite termine.
-\frac{4}{25}+\frac{3}{25}i
Podijelite -4+3i sa 25 da biste dobili -\frac{4}{25}+\frac{3}{25}i.
Re(\frac{i\left(3+4i\right)}{3^{2}-4^{2}i^{2}})
Množenje se može transformirati u razliku kvadrata pomoću pravila: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{i\left(3+4i\right)}{25})
Prema definiciji, i^{2} je -1. Izračunajte imenilac.
Re(\frac{3i+4i^{2}}{25})
Pomnožite i i 3+4i.
Re(\frac{3i+4\left(-1\right)}{25})
Prema definiciji, i^{2} je -1.
Re(\frac{-4+3i}{25})
Izvršite množenja u 3i+4\left(-1\right). Prerasporedite termine.
Re(-\frac{4}{25}+\frac{3}{25}i)
Podijelite -4+3i sa 25 da biste dobili -\frac{4}{25}+\frac{3}{25}i.
-\frac{4}{25}
Realni dio od -\frac{4}{25}+\frac{3}{25}i je -\frac{4}{25}.