\frac { d ^ { 2 } g } { d t ^ { 2 } } = - a \frac { d g } { d t } - b \frac { d h } { d t } + f \frac { d e } { d t }
Riješite za a (complex solution)
a\in \mathrm{C}
Riješite za b (complex solution)
b\in \mathrm{C}
Riješite za a
a\in \mathrm{R}
Riješite za b
b\in \mathrm{R}
Dijeliti
Kopirano u clipboard
\left(-a\right)\frac{\mathrm{d}(g)}{\mathrm{d}t}-b\frac{\mathrm{d}(h)}{\mathrm{d}t}+f\frac{\mathrm{d}(e)}{\mathrm{d}t}=\frac{\mathrm{d}(g)}{\mathrm{d}t^{2}}
Zamijenite strane tako da svi promjenljivi izrazi budu na lijevoj strani.
\left(-a\right)\frac{\mathrm{d}(g)}{\mathrm{d}t}-b\frac{\mathrm{d}(h)}{\mathrm{d}t}=\frac{\mathrm{d}(g)}{\mathrm{d}t^{2}}-f\frac{\mathrm{d}(e)}{\mathrm{d}t}
Oduzmite f\frac{\mathrm{d}(e)}{\mathrm{d}t} s obje strane.
\left(-a\right)\frac{\mathrm{d}(g)}{\mathrm{d}t}=\frac{\mathrm{d}(g)}{\mathrm{d}t^{2}}-f\frac{\mathrm{d}(e)}{\mathrm{d}t}+b\frac{\mathrm{d}(h)}{\mathrm{d}t}
Dodajte b\frac{\mathrm{d}(h)}{\mathrm{d}t} na obje strane.
-a\frac{\mathrm{d}(g)}{\mathrm{d}t}=\frac{\mathrm{d}(g)}{\mathrm{d}t^{2}}+b\frac{\mathrm{d}(h)}{\mathrm{d}t}-f\frac{\mathrm{d}(e)}{\mathrm{d}t}
Prerasporedite termine.
\text{true}
Jednačina je u standardnom obliku.
a\in \mathrm{R}
Ovo je tačno za svaki a.
\left(-a\right)\frac{\mathrm{d}(g)}{\mathrm{d}t}-b\frac{\mathrm{d}(h)}{\mathrm{d}t}+f\frac{\mathrm{d}(e)}{\mathrm{d}t}=\frac{\mathrm{d}(g)}{\mathrm{d}t^{2}}
Zamijenite strane tako da svi promjenljivi izrazi budu na lijevoj strani.
\left(-a\right)\frac{\mathrm{d}(g)}{\mathrm{d}t}-b\frac{\mathrm{d}(h)}{\mathrm{d}t}=\frac{\mathrm{d}(g)}{\mathrm{d}t^{2}}-f\frac{\mathrm{d}(e)}{\mathrm{d}t}
Oduzmite f\frac{\mathrm{d}(e)}{\mathrm{d}t} s obje strane.
-b\frac{\mathrm{d}(h)}{\mathrm{d}t}=\frac{\mathrm{d}(g)}{\mathrm{d}t^{2}}-f\frac{\mathrm{d}(e)}{\mathrm{d}t}+a\frac{\mathrm{d}(g)}{\mathrm{d}t}
Dodajte a\frac{\mathrm{d}(g)}{\mathrm{d}t} na obje strane.
\text{true}
Jednačina je u standardnom obliku.
b\in \mathrm{R}
Ovo je tačno za svaki b.
\left(-a\right)\frac{\mathrm{d}(g)}{\mathrm{d}t}-b\frac{\mathrm{d}(h)}{\mathrm{d}t}+f\frac{\mathrm{d}(e)}{\mathrm{d}t}=\frac{\mathrm{d}(g)}{\mathrm{d}t^{2}}
Zamijenite strane tako da svi promjenljivi izrazi budu na lijevoj strani.
\left(-a\right)\frac{\mathrm{d}(g)}{\mathrm{d}t}-b\frac{\mathrm{d}(h)}{\mathrm{d}t}=\frac{\mathrm{d}(g)}{\mathrm{d}t^{2}}-f\frac{\mathrm{d}(e)}{\mathrm{d}t}
Oduzmite f\frac{\mathrm{d}(e)}{\mathrm{d}t} s obje strane.
\left(-a\right)\frac{\mathrm{d}(g)}{\mathrm{d}t}=\frac{\mathrm{d}(g)}{\mathrm{d}t^{2}}-f\frac{\mathrm{d}(e)}{\mathrm{d}t}+b\frac{\mathrm{d}(h)}{\mathrm{d}t}
Dodajte b\frac{\mathrm{d}(h)}{\mathrm{d}t} na obje strane.
-a\frac{\mathrm{d}(g)}{\mathrm{d}t}=\frac{\mathrm{d}(g)}{\mathrm{d}t^{2}}+b\frac{\mathrm{d}(h)}{\mathrm{d}t}-f\frac{\mathrm{d}(e)}{\mathrm{d}t}
Prerasporedite termine.
\text{true}
Jednačina je u standardnom obliku.
a\in \mathrm{R}
Ovo je tačno za svaki a.
\left(-a\right)\frac{\mathrm{d}(g)}{\mathrm{d}t}-b\frac{\mathrm{d}(h)}{\mathrm{d}t}+f\frac{\mathrm{d}(e)}{\mathrm{d}t}=\frac{\mathrm{d}(g)}{\mathrm{d}t^{2}}
Zamijenite strane tako da svi promjenljivi izrazi budu na lijevoj strani.
\left(-a\right)\frac{\mathrm{d}(g)}{\mathrm{d}t}-b\frac{\mathrm{d}(h)}{\mathrm{d}t}=\frac{\mathrm{d}(g)}{\mathrm{d}t^{2}}-f\frac{\mathrm{d}(e)}{\mathrm{d}t}
Oduzmite f\frac{\mathrm{d}(e)}{\mathrm{d}t} s obje strane.
-b\frac{\mathrm{d}(h)}{\mathrm{d}t}=\frac{\mathrm{d}(g)}{\mathrm{d}t^{2}}-f\frac{\mathrm{d}(e)}{\mathrm{d}t}+a\frac{\mathrm{d}(g)}{\mathrm{d}t}
Dodajte a\frac{\mathrm{d}(g)}{\mathrm{d}t} na obje strane.
\text{true}
Jednačina je u standardnom obliku.
b\in \mathrm{R}
Ovo je tačno za svaki b.
Primjeri
kvadratna jednacina
{ x } ^ { 2 } - 4 x - 5 = 0
trigonometrija
4 \sin \theta \cos \theta = 2 \sin \theta
Linearna jednačina
y = 3x + 4
Aritmetika
699 * 533
Matrica
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultana jednačina
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferencijacija
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integracija
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Granice
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}