Riješite za x
x\in [\frac{4}{11},\frac{1}{2})
Graf
Dijeliti
Kopirano u clipboard
1-2x>0 1-2x<0
Imenilac 1-2x ne može biti jednak nuli jer dijeljenje nulom nije definirano. Postoje dva slučaja.
-2x>-1
Razmotri slučaj kada je 1-2x pozitivno. Premjestite 1 na desnu stranu.
x<\frac{1}{2}
Podijelite obje strane s -2. Pošto je -2 negativan, smjer nejednačine je promijenjen.
3x\geq 4\left(1-2x\right)
Početna nejednakost ne mijenja smjer kada je uvećana za 1-2x puta za 1-2x>0.
3x\geq 4-8x
Pomnožite desnu stranu.
3x+8x\geq 4
Premjestite termine koji sadrže x na lijevu stranu i sve ostale termine na desnu stranu.
11x\geq 4
Kombinirajte slične termine.
x\geq \frac{4}{11}
Podijelite obje strane s 11. Pošto je 11 pozitivan, smjer nejednačine ostaje isti.
x\in [\frac{4}{11},\frac{1}{2})
Razmotrite uslov x<\frac{1}{2} naveden iznad.
-2x<-1
Razmotrite slučaj kad je 1-2x negativno. Premjestite 1 na desnu stranu.
x>\frac{1}{2}
Podijelite obje strane s -2. Pošto je -2 negativan, smjer nejednačine je promijenjen.
3x\leq 4\left(1-2x\right)
Početna nejednakost mijenja smjer kada je uvećana za 1-2x puta za 1-2x<0.
3x\leq 4-8x
Pomnožite desnu stranu.
3x+8x\leq 4
Premjestite termine koji sadrže x na lijevu stranu i sve ostale termine na desnu stranu.
11x\leq 4
Kombinirajte slične termine.
x\leq \frac{4}{11}
Podijelite obje strane s 11. Pošto je 11 pozitivan, smjer nejednačine ostaje isti.
x\in \emptyset
Razmotrite uslov x>\frac{1}{2} naveden iznad.
x\in [\frac{4}{11},\frac{1}{2})
Konačno rješenje je unija dobivenih rješenja.
Primjeri
kvadratna jednacina
{ x } ^ { 2 } - 4 x - 5 = 0
trigonometrija
4 \sin \theta \cos \theta = 2 \sin \theta
Linearna jednačina
y = 3x + 4
Aritmetika
699 * 533
Matrica
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultana jednačina
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferencijacija
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integracija
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Granice
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}