Procijeni
\frac{\left(x-3\right)\left(x-1\right)}{\left(x+1\right)\left(x+4\right)}
Proširi
\frac{x^{2}-4x+3}{\left(x+1\right)\left(x+4\right)}
Graf
Dijeliti
Kopirano u clipboard
\frac{3x^{2}-1}{x^{2}+5x+4}-\frac{2x}{x+1}+\frac{4}{x+4}
Oduzmite 5 od 4 da biste dobili -1.
\frac{3x^{2}-1}{\left(x+1\right)\left(x+4\right)}-\frac{2x}{x+1}+\frac{4}{x+4}
Faktorirajte x^{2}+5x+4.
\frac{3x^{2}-1}{\left(x+1\right)\left(x+4\right)}-\frac{2x\left(x+4\right)}{\left(x+1\right)\left(x+4\right)}+\frac{4}{x+4}
Da biste izvršili zbrajanje ili oduzimanje izraza, rastavite ih kako bi im nazivnici bili isti. Najmanji zajednički množilac brojeva \left(x+1\right)\left(x+4\right) i x+1 je \left(x+1\right)\left(x+4\right). Pomnožite \frac{2x}{x+1} i \frac{x+4}{x+4}.
\frac{3x^{2}-1-2x\left(x+4\right)}{\left(x+1\right)\left(x+4\right)}+\frac{4}{x+4}
Pošto \frac{3x^{2}-1}{\left(x+1\right)\left(x+4\right)} i \frac{2x\left(x+4\right)}{\left(x+1\right)\left(x+4\right)} imaju isti imenilac, oduzmite ih tako što ćete oduzeti njihove brojioce.
\frac{3x^{2}-1-2x^{2}-8x}{\left(x+1\right)\left(x+4\right)}+\frac{4}{x+4}
Izvršite množenja u 3x^{2}-1-2x\left(x+4\right).
\frac{x^{2}-1-8x}{\left(x+1\right)\left(x+4\right)}+\frac{4}{x+4}
Kombinirajte slične izraze u 3x^{2}-1-2x^{2}-8x.
\frac{x^{2}-1-8x}{\left(x+1\right)\left(x+4\right)}+\frac{4\left(x+1\right)}{\left(x+1\right)\left(x+4\right)}
Da biste izvršili zbrajanje ili oduzimanje izraza, rastavite ih kako bi im nazivnici bili isti. Najmanji zajednički množilac brojeva \left(x+1\right)\left(x+4\right) i x+4 je \left(x+1\right)\left(x+4\right). Pomnožite \frac{4}{x+4} i \frac{x+1}{x+1}.
\frac{x^{2}-1-8x+4\left(x+1\right)}{\left(x+1\right)\left(x+4\right)}
Pošto \frac{x^{2}-1-8x}{\left(x+1\right)\left(x+4\right)} i \frac{4\left(x+1\right)}{\left(x+1\right)\left(x+4\right)} imaju isti imenilac, saberite ih tako što ćete sabrati njihove brojioce.
\frac{x^{2}-1-8x+4x+4}{\left(x+1\right)\left(x+4\right)}
Izvršite množenja u x^{2}-1-8x+4\left(x+1\right).
\frac{x^{2}+3-4x}{\left(x+1\right)\left(x+4\right)}
Kombinirajte slične izraze u x^{2}-1-8x+4x+4.
\frac{x^{2}+3-4x}{x^{2}+5x+4}
Proširite \left(x+1\right)\left(x+4\right).
\frac{3x^{2}-1}{x^{2}+5x+4}-\frac{2x}{x+1}+\frac{4}{x+4}
Oduzmite 5 od 4 da biste dobili -1.
\frac{3x^{2}-1}{\left(x+1\right)\left(x+4\right)}-\frac{2x}{x+1}+\frac{4}{x+4}
Faktorirajte x^{2}+5x+4.
\frac{3x^{2}-1}{\left(x+1\right)\left(x+4\right)}-\frac{2x\left(x+4\right)}{\left(x+1\right)\left(x+4\right)}+\frac{4}{x+4}
Da biste izvršili zbrajanje ili oduzimanje izraza, rastavite ih kako bi im nazivnici bili isti. Najmanji zajednički množilac brojeva \left(x+1\right)\left(x+4\right) i x+1 je \left(x+1\right)\left(x+4\right). Pomnožite \frac{2x}{x+1} i \frac{x+4}{x+4}.
\frac{3x^{2}-1-2x\left(x+4\right)}{\left(x+1\right)\left(x+4\right)}+\frac{4}{x+4}
Pošto \frac{3x^{2}-1}{\left(x+1\right)\left(x+4\right)} i \frac{2x\left(x+4\right)}{\left(x+1\right)\left(x+4\right)} imaju isti imenilac, oduzmite ih tako što ćete oduzeti njihove brojioce.
\frac{3x^{2}-1-2x^{2}-8x}{\left(x+1\right)\left(x+4\right)}+\frac{4}{x+4}
Izvršite množenja u 3x^{2}-1-2x\left(x+4\right).
\frac{x^{2}-1-8x}{\left(x+1\right)\left(x+4\right)}+\frac{4}{x+4}
Kombinirajte slične izraze u 3x^{2}-1-2x^{2}-8x.
\frac{x^{2}-1-8x}{\left(x+1\right)\left(x+4\right)}+\frac{4\left(x+1\right)}{\left(x+1\right)\left(x+4\right)}
Da biste izvršili zbrajanje ili oduzimanje izraza, rastavite ih kako bi im nazivnici bili isti. Najmanji zajednički množilac brojeva \left(x+1\right)\left(x+4\right) i x+4 je \left(x+1\right)\left(x+4\right). Pomnožite \frac{4}{x+4} i \frac{x+1}{x+1}.
\frac{x^{2}-1-8x+4\left(x+1\right)}{\left(x+1\right)\left(x+4\right)}
Pošto \frac{x^{2}-1-8x}{\left(x+1\right)\left(x+4\right)} i \frac{4\left(x+1\right)}{\left(x+1\right)\left(x+4\right)} imaju isti imenilac, saberite ih tako što ćete sabrati njihove brojioce.
\frac{x^{2}-1-8x+4x+4}{\left(x+1\right)\left(x+4\right)}
Izvršite množenja u x^{2}-1-8x+4\left(x+1\right).
\frac{x^{2}+3-4x}{\left(x+1\right)\left(x+4\right)}
Kombinirajte slične izraze u x^{2}-1-8x+4x+4.
\frac{x^{2}+3-4x}{x^{2}+5x+4}
Proširite \left(x+1\right)\left(x+4\right).
Primjeri
kvadratna jednacina
{ x } ^ { 2 } - 4 x - 5 = 0
trigonometrija
4 \sin \theta \cos \theta = 2 \sin \theta
Linearna jednačina
y = 3x + 4
Aritmetika
699 * 533
Matrica
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultana jednačina
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferencijacija
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integracija
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Granice
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}