Riješite za V (complex solution)
V=\frac{\sqrt{9v^{4}-4390v^{2}+624225}}{40}+\frac{3v^{2}}{40}-\frac{93}{8}
V=-\frac{\sqrt{9v^{4}-4390v^{2}+624225}}{40}+\frac{3v^{2}}{40}-\frac{93}{8}\text{, }v\neq -\sqrt{255}\text{ and }v\neq \sqrt{255}
Riješite za v (complex solution)
v=-i\left(20-3V\right)^{-\frac{1}{2}}\sqrt{20V^{2}+465V-5100}
v=i\left(20-3V\right)^{-\frac{1}{2}}\sqrt{20V^{2}+465V-5100}\text{, }V\neq 15\text{ and }V\neq 0\text{ and }V\neq \frac{20}{3}
Riješite za V
V=\frac{\sqrt{9v^{4}-4390v^{2}+624225}}{40}+\frac{3v^{2}}{40}-\frac{93}{8}
V=-\frac{\sqrt{9v^{4}-4390v^{2}+624225}}{40}+\frac{3v^{2}}{40}-\frac{93}{8}\text{, }|v|\neq \sqrt{255}
Riješite za v
v=\sqrt{-\frac{5\left(4V^{2}+93V-1020\right)}{20-3V}}
v=-\sqrt{-\frac{5\left(4V^{2}+93V-1020\right)}{20-3V}}\text{, }\left(V\neq 15\text{ and }V\geq \frac{\sqrt{24969}-93}{8}\right)\text{ or }\left(V\neq 0\text{ and }V\geq \frac{-\sqrt{24969}-93}{8}\text{ and }V<\frac{20}{3}\right)
Kviz
Algebra
5 problemi slični sa:
\frac { 200 V - 3000 } { v ^ { 2 } - 255 } + \frac { 200 } { V } = 30
Dijeliti
Kopirano u clipboard
Primjeri
kvadratna jednacina
{ x } ^ { 2 } - 4 x - 5 = 0
trigonometrija
4 \sin \theta \cos \theta = 2 \sin \theta
Linearna jednačina
y = 3x + 4
Aritmetika
699 * 533
Matrica
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultana jednačina
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferencijacija
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integracija
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Granice
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}