Preskoči na glavni sadržaj
Procijeni
Tick mark Image
Razlikovanje u pogledu m
Tick mark Image

Slični problemi iz web pretrage

Dijeliti

\frac{2mn}{\left(m+n\right)\left(m^{2}-mn+n^{2}\right)}+\frac{2m}{\left(m+n\right)\left(m-n\right)}-\frac{1}{m-n}
Faktorirajte m^{3}+n^{3}. Faktorirajte m^{2}-n^{2}.
\frac{2mn\left(m-n\right)}{\left(m+n\right)\left(m-n\right)\left(m^{2}-mn+n^{2}\right)}+\frac{2m\left(m^{2}-mn+n^{2}\right)}{\left(m+n\right)\left(m-n\right)\left(m^{2}-mn+n^{2}\right)}-\frac{1}{m-n}
Da biste izvršili zbrajanje ili oduzimanje izraza, rastavite ih kako bi im nazivnici bili isti. Najmanji zajednički množilac brojeva \left(m+n\right)\left(m^{2}-mn+n^{2}\right) i \left(m+n\right)\left(m-n\right) je \left(m+n\right)\left(m-n\right)\left(m^{2}-mn+n^{2}\right). Pomnožite \frac{2mn}{\left(m+n\right)\left(m^{2}-mn+n^{2}\right)} i \frac{m-n}{m-n}. Pomnožite \frac{2m}{\left(m+n\right)\left(m-n\right)} i \frac{m^{2}-mn+n^{2}}{m^{2}-mn+n^{2}}.
\frac{2mn\left(m-n\right)+2m\left(m^{2}-mn+n^{2}\right)}{\left(m+n\right)\left(m-n\right)\left(m^{2}-mn+n^{2}\right)}-\frac{1}{m-n}
Pošto \frac{2mn\left(m-n\right)}{\left(m+n\right)\left(m-n\right)\left(m^{2}-mn+n^{2}\right)} i \frac{2m\left(m^{2}-mn+n^{2}\right)}{\left(m+n\right)\left(m-n\right)\left(m^{2}-mn+n^{2}\right)} imaju isti imenilac, saberite ih tako što ćete sabrati njihove brojioce.
\frac{2m^{2}n-2mn^{2}+2m^{3}-2m^{2}n+2mn^{2}}{\left(m+n\right)\left(m-n\right)\left(m^{2}-mn+n^{2}\right)}-\frac{1}{m-n}
Izvršite množenja u 2mn\left(m-n\right)+2m\left(m^{2}-mn+n^{2}\right).
\frac{2m^{3}}{\left(m+n\right)\left(m-n\right)\left(m^{2}-mn+n^{2}\right)}-\frac{1}{m-n}
Kombinirajte slične izraze u 2m^{2}n-2mn^{2}+2m^{3}-2m^{2}n+2mn^{2}.
\frac{2m^{3}}{\left(m+n\right)\left(m-n\right)\left(m^{2}-mn+n^{2}\right)}-\frac{\left(m+n\right)\left(m^{2}-mn+n^{2}\right)}{\left(m+n\right)\left(m-n\right)\left(m^{2}-mn+n^{2}\right)}
Da biste izvršili zbrajanje ili oduzimanje izraza, rastavite ih kako bi im nazivnici bili isti. Najmanji zajednički množilac brojeva \left(m+n\right)\left(m-n\right)\left(m^{2}-mn+n^{2}\right) i m-n je \left(m+n\right)\left(m-n\right)\left(m^{2}-mn+n^{2}\right). Pomnožite \frac{1}{m-n} i \frac{\left(m+n\right)\left(m^{2}-mn+n^{2}\right)}{\left(m+n\right)\left(m^{2}-mn+n^{2}\right)}.
\frac{2m^{3}-\left(m+n\right)\left(m^{2}-mn+n^{2}\right)}{\left(m+n\right)\left(m-n\right)\left(m^{2}-mn+n^{2}\right)}
Pošto \frac{2m^{3}}{\left(m+n\right)\left(m-n\right)\left(m^{2}-mn+n^{2}\right)} i \frac{\left(m+n\right)\left(m^{2}-mn+n^{2}\right)}{\left(m+n\right)\left(m-n\right)\left(m^{2}-mn+n^{2}\right)} imaju isti imenilac, oduzmite ih tako što ćete oduzeti njihove brojioce.
\frac{2m^{3}-m^{3}+m^{2}n-mn^{2}-nm^{2}+n^{2}m-n^{3}}{\left(m+n\right)\left(m-n\right)\left(m^{2}-mn+n^{2}\right)}
Izvršite množenja u 2m^{3}-\left(m+n\right)\left(m^{2}-mn+n^{2}\right).
\frac{m^{3}-n^{3}}{\left(m+n\right)\left(m-n\right)\left(m^{2}-mn+n^{2}\right)}
Kombinirajte slične izraze u 2m^{3}-m^{3}+m^{2}n-mn^{2}-nm^{2}+n^{2}m-n^{3}.
\frac{\left(m-n\right)\left(m^{2}+mn+n^{2}\right)}{\left(m+n\right)\left(m-n\right)\left(m^{2}-mn+n^{2}\right)}
Faktorirajte izraze koji nisu već faktorirani u \frac{m^{3}-n^{3}}{\left(m+n\right)\left(m-n\right)\left(m^{2}-mn+n^{2}\right)}.
\frac{m^{2}+mn+n^{2}}{\left(m+n\right)\left(m^{2}-mn+n^{2}\right)}
Otkaži m-n u brojiocu i imeniocu.
\frac{m^{2}+mn+n^{2}}{m^{3}+n^{3}}
Proširite \left(m+n\right)\left(m^{2}-mn+n^{2}\right).