Preskoči na glavni sadržaj
Procijeni
Tick mark Image
Razlikovanje u pogledu x
Tick mark Image
Graf

Slični problemi iz web pretrage

Dijeliti

\frac{1}{\left(x-3\right)\left(x-2\right)}+\frac{1}{\left(x-2\right)\left(x-1\right)}+\frac{2}{x^{2}-8x+15}
Faktorirajte x^{2}-5x+6. Faktorirajte x^{2}-3x+2.
\frac{x-1}{\left(x-3\right)\left(x-2\right)\left(x-1\right)}+\frac{x-3}{\left(x-3\right)\left(x-2\right)\left(x-1\right)}+\frac{2}{x^{2}-8x+15}
Da biste izvršili zbrajanje ili oduzimanje izraza, rastavite ih kako bi im nazivnici bili isti. Najmanji zajednički množilac brojeva \left(x-3\right)\left(x-2\right) i \left(x-2\right)\left(x-1\right) je \left(x-3\right)\left(x-2\right)\left(x-1\right). Pomnožite \frac{1}{\left(x-3\right)\left(x-2\right)} i \frac{x-1}{x-1}. Pomnožite \frac{1}{\left(x-2\right)\left(x-1\right)} i \frac{x-3}{x-3}.
\frac{x-1+x-3}{\left(x-3\right)\left(x-2\right)\left(x-1\right)}+\frac{2}{x^{2}-8x+15}
Pošto \frac{x-1}{\left(x-3\right)\left(x-2\right)\left(x-1\right)} i \frac{x-3}{\left(x-3\right)\left(x-2\right)\left(x-1\right)} imaju isti imenilac, saberite ih tako što ćete sabrati njihove brojioce.
\frac{2x-4}{\left(x-3\right)\left(x-2\right)\left(x-1\right)}+\frac{2}{x^{2}-8x+15}
Kombinirajte slične izraze u x-1+x-3.
\frac{2\left(x-2\right)}{\left(x-3\right)\left(x-2\right)\left(x-1\right)}+\frac{2}{x^{2}-8x+15}
Faktorirajte izraze koji nisu već faktorirani u \frac{2x-4}{\left(x-3\right)\left(x-2\right)\left(x-1\right)}.
\frac{2}{\left(x-3\right)\left(x-1\right)}+\frac{2}{x^{2}-8x+15}
Otkaži x-2 u brojiocu i imeniocu.
\frac{2}{\left(x-3\right)\left(x-1\right)}+\frac{2}{\left(x-5\right)\left(x-3\right)}
Faktorirajte x^{2}-8x+15.
\frac{2\left(x-5\right)}{\left(x-5\right)\left(x-3\right)\left(x-1\right)}+\frac{2\left(x-1\right)}{\left(x-5\right)\left(x-3\right)\left(x-1\right)}
Da biste izvršili zbrajanje ili oduzimanje izraza, rastavite ih kako bi im nazivnici bili isti. Najmanji zajednički množilac brojeva \left(x-3\right)\left(x-1\right) i \left(x-5\right)\left(x-3\right) je \left(x-5\right)\left(x-3\right)\left(x-1\right). Pomnožite \frac{2}{\left(x-3\right)\left(x-1\right)} i \frac{x-5}{x-5}. Pomnožite \frac{2}{\left(x-5\right)\left(x-3\right)} i \frac{x-1}{x-1}.
\frac{2\left(x-5\right)+2\left(x-1\right)}{\left(x-5\right)\left(x-3\right)\left(x-1\right)}
Pošto \frac{2\left(x-5\right)}{\left(x-5\right)\left(x-3\right)\left(x-1\right)} i \frac{2\left(x-1\right)}{\left(x-5\right)\left(x-3\right)\left(x-1\right)} imaju isti imenilac, saberite ih tako što ćete sabrati njihove brojioce.
\frac{2x-10+2x-2}{\left(x-5\right)\left(x-3\right)\left(x-1\right)}
Izvršite množenja u 2\left(x-5\right)+2\left(x-1\right).
\frac{4x-12}{\left(x-5\right)\left(x-3\right)\left(x-1\right)}
Kombinirajte slične izraze u 2x-10+2x-2.
\frac{4\left(x-3\right)}{\left(x-5\right)\left(x-3\right)\left(x-1\right)}
Faktorirajte izraze koji nisu već faktorirani u \frac{4x-12}{\left(x-5\right)\left(x-3\right)\left(x-1\right)}.
\frac{4}{\left(x-5\right)\left(x-1\right)}
Otkaži x-3 u brojiocu i imeniocu.
\frac{4}{x^{2}-6x+5}
Proširite \left(x-5\right)\left(x-1\right).