Preskoči na glavni sadržaj
Procijeni
Tick mark Image
Proširi
Tick mark Image

Slični problemi iz web pretrage

Dijeliti

\frac{\left(u-vi\right)\left(v-vi\right)-\left(v+vi\right)^{2}}{\left(u+vi\right)\left(v-vi\right)}
Pomnožite v+vi i v+vi da biste dobili \left(v+vi\right)^{2}.
\frac{\left(u-vi\right)\left(1-i\right)v-\left(v+vi\right)^{2}}{\left(u+vi\right)\left(v-vi\right)}
Kombinirajte v i -vi da biste dobili \left(1-i\right)v.
\frac{\left(u-vi\right)\left(1-i\right)v-\left(\left(1+i\right)v\right)^{2}}{\left(u+vi\right)\left(v-vi\right)}
Kombinirajte v i vi da biste dobili \left(1+i\right)v.
\frac{\left(u-vi\right)\left(1-i\right)v-\left(1+i\right)^{2}v^{2}}{\left(u+vi\right)\left(v-vi\right)}
Proširite \left(\left(1+i\right)v\right)^{2}.
\frac{\left(u-vi\right)\left(1-i\right)v-2iv^{2}}{\left(u+vi\right)\left(v-vi\right)}
Izračunajte 1+i stepen od 2 i dobijte 2i.
\frac{\left(u-vi\right)\left(1-i\right)v-2iv^{2}}{\left(u+vi\right)\left(1-i\right)v}
Kombinirajte v i -vi da biste dobili \left(1-i\right)v.
\frac{\left(u-vi\right)\left(1-i\right)v-2iv^{2}}{\left(\left(1-i\right)u+\left(1-i\right)vi\right)v}
Koristite distributivno svojstvo da biste pomnožili u+vi sa 1-i.
\frac{\left(u-vi\right)\left(1-i\right)v-2iv^{2}}{\left(\left(1-i\right)u+\left(i-i^{2}\right)v\right)v}
Pomnožite 1-i i i.
\frac{\left(u-vi\right)\left(1-i\right)v-2iv^{2}}{\left(\left(1-i\right)u+\left(i-\left(-1\right)\right)v\right)v}
Prema definiciji, i^{2} je -1.
\frac{\left(u-vi\right)\left(1-i\right)v-2iv^{2}}{\left(\left(1-i\right)u+\left(1+i\right)v\right)v}
Izvršite množenja u i-\left(-1\right). Prerasporedite termine.
\frac{\left(u-vi\right)\left(1-i\right)v-2iv^{2}}{\left(1-i\right)uv+\left(1+i\right)v^{2}}
Koristite distributivno svojstvo da biste pomnožili \left(1-i\right)u+\left(1+i\right)v sa v.
\frac{\left(u-iv\right)\left(1-i\right)v-2iv^{2}}{\left(1-i\right)uv+\left(1+i\right)v^{2}}
Pomnožite -1 i i da biste dobili -i.
\frac{\left(\left(1-i\right)u+\left(-1-i\right)v\right)v-2iv^{2}}{\left(1-i\right)uv+\left(1+i\right)v^{2}}
Koristite distributivno svojstvo da biste pomnožili u-iv sa 1-i.
\frac{\left(1-i\right)uv+\left(-1-i\right)v^{2}-2iv^{2}}{\left(1-i\right)uv+\left(1+i\right)v^{2}}
Koristite distributivno svojstvo da biste pomnožili \left(1-i\right)u+\left(-1-i\right)v sa v.
\frac{\left(1-i\right)uv+\left(-1-3i\right)v^{2}}{\left(1-i\right)uv+\left(1+i\right)v^{2}}
Kombinirajte \left(-1-i\right)v^{2} i -2iv^{2} da biste dobili \left(-1-3i\right)v^{2}.
\frac{\left(u-vi\right)\left(v-vi\right)-\left(v+vi\right)^{2}}{\left(u+vi\right)\left(v-vi\right)}
Pomnožite v+vi i v+vi da biste dobili \left(v+vi\right)^{2}.
\frac{\left(u-vi\right)\left(1-i\right)v-\left(v+vi\right)^{2}}{\left(u+vi\right)\left(v-vi\right)}
Kombinirajte v i -vi da biste dobili \left(1-i\right)v.
\frac{\left(u-vi\right)\left(1-i\right)v-\left(\left(1+i\right)v\right)^{2}}{\left(u+vi\right)\left(v-vi\right)}
Kombinirajte v i vi da biste dobili \left(1+i\right)v.
\frac{\left(u-vi\right)\left(1-i\right)v-\left(1+i\right)^{2}v^{2}}{\left(u+vi\right)\left(v-vi\right)}
Proširite \left(\left(1+i\right)v\right)^{2}.
\frac{\left(u-vi\right)\left(1-i\right)v-2iv^{2}}{\left(u+vi\right)\left(v-vi\right)}
Izračunajte 1+i stepen od 2 i dobijte 2i.
\frac{\left(u-vi\right)\left(1-i\right)v-2iv^{2}}{\left(u+vi\right)\left(1-i\right)v}
Kombinirajte v i -vi da biste dobili \left(1-i\right)v.
\frac{\left(u-vi\right)\left(1-i\right)v-2iv^{2}}{\left(\left(1-i\right)u+\left(1-i\right)vi\right)v}
Koristite distributivno svojstvo da biste pomnožili u+vi sa 1-i.
\frac{\left(u-vi\right)\left(1-i\right)v-2iv^{2}}{\left(\left(1-i\right)u+\left(i-i^{2}\right)v\right)v}
Pomnožite 1-i i i.
\frac{\left(u-vi\right)\left(1-i\right)v-2iv^{2}}{\left(\left(1-i\right)u+\left(i-\left(-1\right)\right)v\right)v}
Prema definiciji, i^{2} je -1.
\frac{\left(u-vi\right)\left(1-i\right)v-2iv^{2}}{\left(\left(1-i\right)u+\left(1+i\right)v\right)v}
Izvršite množenja u i-\left(-1\right). Prerasporedite termine.
\frac{\left(u-vi\right)\left(1-i\right)v-2iv^{2}}{\left(1-i\right)uv+\left(1+i\right)v^{2}}
Koristite distributivno svojstvo da biste pomnožili \left(1-i\right)u+\left(1+i\right)v sa v.
\frac{\left(u-iv\right)\left(1-i\right)v-2iv^{2}}{\left(1-i\right)uv+\left(1+i\right)v^{2}}
Pomnožite -1 i i da biste dobili -i.
\frac{\left(\left(1-i\right)u+\left(-1-i\right)v\right)v-2iv^{2}}{\left(1-i\right)uv+\left(1+i\right)v^{2}}
Koristite distributivno svojstvo da biste pomnožili u-iv sa 1-i.
\frac{\left(1-i\right)uv+\left(-1-i\right)v^{2}-2iv^{2}}{\left(1-i\right)uv+\left(1+i\right)v^{2}}
Koristite distributivno svojstvo da biste pomnožili \left(1-i\right)u+\left(-1-i\right)v sa v.
\frac{\left(1-i\right)uv+\left(-1-3i\right)v^{2}}{\left(1-i\right)uv+\left(1+i\right)v^{2}}
Kombinirajte \left(-1-i\right)v^{2} i -2iv^{2} da biste dobili \left(-1-3i\right)v^{2}.