Procijeni
\frac{64b^{3}a^{4}}{9}
Proširi
\frac{64b^{3}a^{4}}{9}
Dijeliti
Kopirano u clipboard
\frac{\left(3a^{5}\right)^{2}\times \left(8b^{5}\right)^{3}}{\left(2b^{4}\right)^{3}\times \left(9a^{3}\right)^{2}}
Podijelite \frac{\left(3a^{5}\right)^{2}}{\left(2b^{4}\right)^{3}} sa \frac{\left(9a^{3}\right)^{2}}{\left(8b^{5}\right)^{3}} tako što ćete pomnožiti \frac{\left(3a^{5}\right)^{2}}{\left(2b^{4}\right)^{3}} recipročnom vrijednošću od \frac{\left(9a^{3}\right)^{2}}{\left(8b^{5}\right)^{3}}.
\frac{3^{2}\left(a^{5}\right)^{2}\times \left(8b^{5}\right)^{3}}{\left(2b^{4}\right)^{3}\times \left(9a^{3}\right)^{2}}
Proširite \left(3a^{5}\right)^{2}.
\frac{3^{2}a^{10}\times \left(8b^{5}\right)^{3}}{\left(2b^{4}\right)^{3}\times \left(9a^{3}\right)^{2}}
Da biste podigli stepen na neki drugi stepen, pomnožite eksponente. Pomnožite 5 i 2 da biste dobili 10.
\frac{9a^{10}\times \left(8b^{5}\right)^{3}}{\left(2b^{4}\right)^{3}\times \left(9a^{3}\right)^{2}}
Izračunajte 3 stepen od 2 i dobijte 9.
\frac{9a^{10}\times 8^{3}\left(b^{5}\right)^{3}}{\left(2b^{4}\right)^{3}\times \left(9a^{3}\right)^{2}}
Proširite \left(8b^{5}\right)^{3}.
\frac{9a^{10}\times 8^{3}b^{15}}{\left(2b^{4}\right)^{3}\times \left(9a^{3}\right)^{2}}
Da biste podigli stepen na neki drugi stepen, pomnožite eksponente. Pomnožite 5 i 3 da biste dobili 15.
\frac{9a^{10}\times 512b^{15}}{\left(2b^{4}\right)^{3}\times \left(9a^{3}\right)^{2}}
Izračunajte 8 stepen od 3 i dobijte 512.
\frac{4608a^{10}b^{15}}{\left(2b^{4}\right)^{3}\times \left(9a^{3}\right)^{2}}
Pomnožite 9 i 512 da biste dobili 4608.
\frac{4608a^{10}b^{15}}{2^{3}\left(b^{4}\right)^{3}\times \left(9a^{3}\right)^{2}}
Proširite \left(2b^{4}\right)^{3}.
\frac{4608a^{10}b^{15}}{2^{3}b^{12}\times \left(9a^{3}\right)^{2}}
Da biste podigli stepen na neki drugi stepen, pomnožite eksponente. Pomnožite 4 i 3 da biste dobili 12.
\frac{4608a^{10}b^{15}}{8b^{12}\times \left(9a^{3}\right)^{2}}
Izračunajte 2 stepen od 3 i dobijte 8.
\frac{4608a^{10}b^{15}}{8b^{12}\times 9^{2}\left(a^{3}\right)^{2}}
Proširite \left(9a^{3}\right)^{2}.
\frac{4608a^{10}b^{15}}{8b^{12}\times 9^{2}a^{6}}
Da biste podigli stepen na neki drugi stepen, pomnožite eksponente. Pomnožite 3 i 2 da biste dobili 6.
\frac{4608a^{10}b^{15}}{8b^{12}\times 81a^{6}}
Izračunajte 9 stepen od 2 i dobijte 81.
\frac{4608a^{10}b^{15}}{648b^{12}a^{6}}
Pomnožite 8 i 81 da biste dobili 648.
\frac{64b^{3}a^{4}}{9}
Otkaži 72a^{6}b^{12} u brojiocu i imeniocu.
\frac{\left(3a^{5}\right)^{2}\times \left(8b^{5}\right)^{3}}{\left(2b^{4}\right)^{3}\times \left(9a^{3}\right)^{2}}
Podijelite \frac{\left(3a^{5}\right)^{2}}{\left(2b^{4}\right)^{3}} sa \frac{\left(9a^{3}\right)^{2}}{\left(8b^{5}\right)^{3}} tako što ćete pomnožiti \frac{\left(3a^{5}\right)^{2}}{\left(2b^{4}\right)^{3}} recipročnom vrijednošću od \frac{\left(9a^{3}\right)^{2}}{\left(8b^{5}\right)^{3}}.
\frac{3^{2}\left(a^{5}\right)^{2}\times \left(8b^{5}\right)^{3}}{\left(2b^{4}\right)^{3}\times \left(9a^{3}\right)^{2}}
Proširite \left(3a^{5}\right)^{2}.
\frac{3^{2}a^{10}\times \left(8b^{5}\right)^{3}}{\left(2b^{4}\right)^{3}\times \left(9a^{3}\right)^{2}}
Da biste podigli stepen na neki drugi stepen, pomnožite eksponente. Pomnožite 5 i 2 da biste dobili 10.
\frac{9a^{10}\times \left(8b^{5}\right)^{3}}{\left(2b^{4}\right)^{3}\times \left(9a^{3}\right)^{2}}
Izračunajte 3 stepen od 2 i dobijte 9.
\frac{9a^{10}\times 8^{3}\left(b^{5}\right)^{3}}{\left(2b^{4}\right)^{3}\times \left(9a^{3}\right)^{2}}
Proširite \left(8b^{5}\right)^{3}.
\frac{9a^{10}\times 8^{3}b^{15}}{\left(2b^{4}\right)^{3}\times \left(9a^{3}\right)^{2}}
Da biste podigli stepen na neki drugi stepen, pomnožite eksponente. Pomnožite 5 i 3 da biste dobili 15.
\frac{9a^{10}\times 512b^{15}}{\left(2b^{4}\right)^{3}\times \left(9a^{3}\right)^{2}}
Izračunajte 8 stepen od 3 i dobijte 512.
\frac{4608a^{10}b^{15}}{\left(2b^{4}\right)^{3}\times \left(9a^{3}\right)^{2}}
Pomnožite 9 i 512 da biste dobili 4608.
\frac{4608a^{10}b^{15}}{2^{3}\left(b^{4}\right)^{3}\times \left(9a^{3}\right)^{2}}
Proširite \left(2b^{4}\right)^{3}.
\frac{4608a^{10}b^{15}}{2^{3}b^{12}\times \left(9a^{3}\right)^{2}}
Da biste podigli stepen na neki drugi stepen, pomnožite eksponente. Pomnožite 4 i 3 da biste dobili 12.
\frac{4608a^{10}b^{15}}{8b^{12}\times \left(9a^{3}\right)^{2}}
Izračunajte 2 stepen od 3 i dobijte 8.
\frac{4608a^{10}b^{15}}{8b^{12}\times 9^{2}\left(a^{3}\right)^{2}}
Proširite \left(9a^{3}\right)^{2}.
\frac{4608a^{10}b^{15}}{8b^{12}\times 9^{2}a^{6}}
Da biste podigli stepen na neki drugi stepen, pomnožite eksponente. Pomnožite 3 i 2 da biste dobili 6.
\frac{4608a^{10}b^{15}}{8b^{12}\times 81a^{6}}
Izračunajte 9 stepen od 2 i dobijte 81.
\frac{4608a^{10}b^{15}}{648b^{12}a^{6}}
Pomnožite 8 i 81 da biste dobili 648.
\frac{64b^{3}a^{4}}{9}
Otkaži 72a^{6}b^{12} u brojiocu i imeniocu.
Primjeri
kvadratna jednacina
{ x } ^ { 2 } - 4 x - 5 = 0
trigonometrija
4 \sin \theta \cos \theta = 2 \sin \theta
Linearna jednačina
y = 3x + 4
Aritmetika
699 * 533
Matrica
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultana jednačina
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferencijacija
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integracija
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Granice
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}