Preskoči na glavni sadržaj
Procijeni
Tick mark Image
Faktor
Tick mark Image

Slični problemi iz web pretrage

Dijeliti

\frac{\frac{\left(x-y\right)\left(x-y\right)}{\left(x+y\right)\left(x-y\right)}-\frac{\left(x+y\right)\left(x+y\right)}{\left(x+y\right)\left(x-y\right)}}{1-\frac{x^{2}-xy-y^{2}}{x^{2}-y^{2}}}
Da biste izvršili zbrajanje ili oduzimanje izraza, rastavite ih kako bi im nazivnici bili isti. Najmanji zajednički množilac brojeva x+y i x-y je \left(x+y\right)\left(x-y\right). Pomnožite \frac{x-y}{x+y} i \frac{x-y}{x-y}. Pomnožite \frac{x+y}{x-y} i \frac{x+y}{x+y}.
\frac{\frac{\left(x-y\right)\left(x-y\right)-\left(x+y\right)\left(x+y\right)}{\left(x+y\right)\left(x-y\right)}}{1-\frac{x^{2}-xy-y^{2}}{x^{2}-y^{2}}}
Pošto \frac{\left(x-y\right)\left(x-y\right)}{\left(x+y\right)\left(x-y\right)} i \frac{\left(x+y\right)\left(x+y\right)}{\left(x+y\right)\left(x-y\right)} imaju isti imenilac, oduzmite ih tako što ćete oduzeti njihove brojioce.
\frac{\frac{x^{2}-xy-xy+y^{2}-x^{2}-xy-xy-y^{2}}{\left(x+y\right)\left(x-y\right)}}{1-\frac{x^{2}-xy-y^{2}}{x^{2}-y^{2}}}
Izvršite množenja u \left(x-y\right)\left(x-y\right)-\left(x+y\right)\left(x+y\right).
\frac{\frac{-4xy}{\left(x+y\right)\left(x-y\right)}}{1-\frac{x^{2}-xy-y^{2}}{x^{2}-y^{2}}}
Kombinirajte slične izraze u x^{2}-xy-xy+y^{2}-x^{2}-xy-xy-y^{2}.
\frac{\frac{-4xy}{\left(x+y\right)\left(x-y\right)}}{1-\frac{x^{2}-xy-y^{2}}{\left(x+y\right)\left(x-y\right)}}
Faktorirajte x^{2}-y^{2}.
\frac{\frac{-4xy}{\left(x+y\right)\left(x-y\right)}}{\frac{\left(x+y\right)\left(x-y\right)}{\left(x+y\right)\left(x-y\right)}-\frac{x^{2}-xy-y^{2}}{\left(x+y\right)\left(x-y\right)}}
Da biste izvršili zbrajanje ili oduzimanje izraza, rastavite ih kako bi im nazivnici bili isti. Pomnožite 1 i \frac{\left(x+y\right)\left(x-y\right)}{\left(x+y\right)\left(x-y\right)}.
\frac{\frac{-4xy}{\left(x+y\right)\left(x-y\right)}}{\frac{\left(x+y\right)\left(x-y\right)-\left(x^{2}-xy-y^{2}\right)}{\left(x+y\right)\left(x-y\right)}}
Pošto \frac{\left(x+y\right)\left(x-y\right)}{\left(x+y\right)\left(x-y\right)} i \frac{x^{2}-xy-y^{2}}{\left(x+y\right)\left(x-y\right)} imaju isti imenilac, oduzmite ih tako što ćete oduzeti njihove brojioce.
\frac{\frac{-4xy}{\left(x+y\right)\left(x-y\right)}}{\frac{x^{2}-xy+yx-y^{2}-x^{2}+xy+y^{2}}{\left(x+y\right)\left(x-y\right)}}
Izvršite množenja u \left(x+y\right)\left(x-y\right)-\left(x^{2}-xy-y^{2}\right).
\frac{\frac{-4xy}{\left(x+y\right)\left(x-y\right)}}{\frac{xy}{\left(x+y\right)\left(x-y\right)}}
Kombinirajte slične izraze u x^{2}-xy+yx-y^{2}-x^{2}+xy+y^{2}.
\frac{-4xy\left(x+y\right)\left(x-y\right)}{\left(x+y\right)\left(x-y\right)xy}
Podijelite \frac{-4xy}{\left(x+y\right)\left(x-y\right)} sa \frac{xy}{\left(x+y\right)\left(x-y\right)} tako što ćete pomnožiti \frac{-4xy}{\left(x+y\right)\left(x-y\right)} recipročnom vrijednošću od \frac{xy}{\left(x+y\right)\left(x-y\right)}.
-4
Otkaži xy\left(x+y\right)\left(x-y\right) u brojiocu i imeniocu.