Razlikovanje u pogledu α
-\sin(\alpha )
Procijeni
\cos(\alpha )
Dijeliti
Kopirano u clipboard
\frac{\mathrm{d}}{\mathrm{d}\alpha }(\cos(\alpha ))=\left(\lim_{h\to 0}\frac{\cos(\alpha +h)-\cos(\alpha )}{h}\right)
Za funkciju f\left(x\right), izvedeni broj je ograničenje \frac{f\left(x+h\right)-f\left(x\right)}{h} zato što h odlazi na 0 ako to ograničenje postoji.
\lim_{h\to 0}\frac{\cos(h+\alpha )-\cos(\alpha )}{h}
Koristite formulu zbira za kosinus.
\lim_{h\to 0}\frac{\cos(\alpha )\left(\cos(h)-1\right)-\sin(\alpha )\sin(h)}{h}
Izbacite \cos(\alpha ).
\left(\lim_{h\to 0}\cos(\alpha )\right)\left(\lim_{h\to 0}\frac{\cos(h)-1}{h}\right)-\left(\lim_{h\to 0}\sin(\alpha )\right)\left(\lim_{h\to 0}\frac{\sin(h)}{h}\right)
Ponovo napišite ograničenje.
\cos(\alpha )\left(\lim_{h\to 0}\frac{\cos(h)-1}{h}\right)-\sin(\alpha )\left(\lim_{h\to 0}\frac{\sin(h)}{h}\right)
Koristite činjenicu da je \alpha konstanta prilikom izračunavanja ograničenja dok h odlazi na 0.
\cos(\alpha )\left(\lim_{h\to 0}\frac{\cos(h)-1}{h}\right)-\sin(\alpha )
Ograničenje \lim_{\alpha \to 0}\frac{\sin(\alpha )}{\alpha } je 1.
\left(\lim_{h\to 0}\frac{\cos(h)-1}{h}\right)=\left(\lim_{h\to 0}\frac{\left(\cos(h)-1\right)\left(\cos(h)+1\right)}{h\left(\cos(h)+1\right)}\right)
Da biste procijenili ograničenje \lim_{h\to 0}\frac{\cos(h)-1}{h}, prvo pomnožite brojilac i imenilac sa \cos(h)+1.
\lim_{h\to 0}\frac{\left(\cos(h)\right)^{2}-1}{h\left(\cos(h)+1\right)}
Pomnožite \cos(h)+1 i \cos(h)-1.
\lim_{h\to 0}-\frac{\left(\sin(h)\right)^{2}}{h\left(\cos(h)+1\right)}
Koristite Pitagorin identitet.
\left(\lim_{h\to 0}-\frac{\sin(h)}{h}\right)\left(\lim_{h\to 0}\frac{\sin(h)}{\cos(h)+1}\right)
Ponovo napišite ograničenje.
-\left(\lim_{h\to 0}\frac{\sin(h)}{\cos(h)+1}\right)
Ograničenje \lim_{\alpha \to 0}\frac{\sin(\alpha )}{\alpha } je 1.
\left(\lim_{h\to 0}\frac{\sin(h)}{\cos(h)+1}\right)=0
Koristite činjenicu da je \frac{\sin(h)}{\cos(h)+1} neprekidan u 0.
-\sin(\alpha )
Zamijenite vrijednost 0 u izraz \cos(\alpha )\left(\lim_{h\to 0}\frac{\cos(h)-1}{h}\right)-\sin(\alpha ).
Primjeri
kvadratna jednacina
{ x } ^ { 2 } - 4 x - 5 = 0
trigonometrija
4 \sin \theta \cos \theta = 2 \sin \theta
Linearna jednačina
y = 3x + 4
Aritmetika
699 * 533
Matrica
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultana jednačina
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferencijacija
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integracija
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Granice
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}