Preskoči na glavni sadržaj
Procijeni
Tick mark Image
Proširi
Tick mark Image
Graf

Slični problemi iz web pretrage

Dijeliti

\frac{1,5-\left(\frac{x^{4}\left(x^{2}+1\right)}{x^{2}+1}-\frac{x^{4}+1}{x^{2}+1}\right)\times \frac{\left(x^{2}+1\right)\left(x-4\right)}{x^{7}+6x^{6}-x-6}}{\frac{x^{2}+29x+78}{3x^{2}+12x-36}}
Da biste izvršili zbrajanje ili oduzimanje izraza, rastavite ih kako bi im nazivnici bili isti. Pomnožite x^{4} i \frac{x^{2}+1}{x^{2}+1}.
\frac{1,5-\frac{x^{4}\left(x^{2}+1\right)-\left(x^{4}+1\right)}{x^{2}+1}\times \frac{\left(x^{2}+1\right)\left(x-4\right)}{x^{7}+6x^{6}-x-6}}{\frac{x^{2}+29x+78}{3x^{2}+12x-36}}
Pošto \frac{x^{4}\left(x^{2}+1\right)}{x^{2}+1} i \frac{x^{4}+1}{x^{2}+1} imaju isti imenilac, oduzmite ih tako što ćete oduzeti njihove brojioce.
\frac{1,5-\frac{x^{6}+x^{4}-x^{4}-1}{x^{2}+1}\times \frac{\left(x^{2}+1\right)\left(x-4\right)}{x^{7}+6x^{6}-x-6}}{\frac{x^{2}+29x+78}{3x^{2}+12x-36}}
Izvršite množenja u x^{4}\left(x^{2}+1\right)-\left(x^{4}+1\right).
\frac{1,5-\frac{x^{6}-1}{x^{2}+1}\times \frac{\left(x^{2}+1\right)\left(x-4\right)}{x^{7}+6x^{6}-x-6}}{\frac{x^{2}+29x+78}{3x^{2}+12x-36}}
Kombinirajte slične izraze u x^{6}+x^{4}-x^{4}-1.
\frac{1,5-\frac{\left(x^{6}-1\right)\left(x^{2}+1\right)\left(x-4\right)}{\left(x^{2}+1\right)\left(x^{7}+6x^{6}-x-6\right)}}{\frac{x^{2}+29x+78}{3x^{2}+12x-36}}
Pomnožite \frac{x^{6}-1}{x^{2}+1} i \frac{\left(x^{2}+1\right)\left(x-4\right)}{x^{7}+6x^{6}-x-6} tako što ćete pomnožiti brojilac s brojiocem i imenilac s imeniocem.
\frac{1,5-\frac{\left(x-4\right)\left(x^{6}-1\right)}{x^{7}+6x^{6}-x-6}}{\frac{x^{2}+29x+78}{3x^{2}+12x-36}}
Otkaži x^{2}+1 u brojiocu i imeniocu.
\frac{1,5-\frac{\left(x-4\right)\left(x-1\right)\left(x+1\right)\left(x^{2}+x+1\right)\left(x^{2}-x+1\right)}{\left(x-1\right)\left(x+1\right)\left(x+6\right)\left(x^{2}+x+1\right)\left(x^{2}-x+1\right)}}{\frac{x^{2}+29x+78}{3x^{2}+12x-36}}
Faktorirajte izraze koji nisu već faktorirani u \frac{\left(x-4\right)\left(x^{6}-1\right)}{x^{7}+6x^{6}-x-6}.
\frac{1,5-\frac{x-4}{x+6}}{\frac{x^{2}+29x+78}{3x^{2}+12x-36}}
Otkaži \left(x-1\right)\left(x+1\right)\left(x^{2}+x+1\right)\left(x^{2}-x+1\right) u brojiocu i imeniocu.
\frac{\left(1,5-\frac{x-4}{x+6}\right)\left(3x^{2}+12x-36\right)}{x^{2}+29x+78}
Podijelite 1,5-\frac{x-4}{x+6} sa \frac{x^{2}+29x+78}{3x^{2}+12x-36} tako što ćete pomnožiti 1,5-\frac{x-4}{x+6} recipročnom vrijednošću od \frac{x^{2}+29x+78}{3x^{2}+12x-36}.
\frac{4,5x^{2}+18x-54-3\times \frac{x-4}{x+6}x^{2}-12\times \frac{x-4}{x+6}x+36\times \frac{x-4}{x+6}}{x^{2}+29x+78}
Koristite distributivno svojstvo da biste pomnožili 1,5-\frac{x-4}{x+6} sa 3x^{2}+12x-36.
\frac{4,5x^{2}+18x-54+\frac{-3\left(x-4\right)}{x+6}x^{2}-12\times \frac{x-4}{x+6}x+36\times \frac{x-4}{x+6}}{x^{2}+29x+78}
Izrazite -3\times \frac{x-4}{x+6} kao jedan razlomak.
\frac{4,5x^{2}+18x-54+\frac{-3\left(x-4\right)x^{2}}{x+6}-12\times \frac{x-4}{x+6}x+36\times \frac{x-4}{x+6}}{x^{2}+29x+78}
Izrazite \frac{-3\left(x-4\right)}{x+6}x^{2} kao jedan razlomak.
\frac{4,5x^{2}+18x-54+\frac{-3\left(x-4\right)x^{2}}{x+6}+\frac{-12\left(x-4\right)}{x+6}x+36\times \frac{x-4}{x+6}}{x^{2}+29x+78}
Izrazite -12\times \frac{x-4}{x+6} kao jedan razlomak.
\frac{4,5x^{2}+18x-54+\frac{-3\left(x-4\right)x^{2}}{x+6}+\frac{-12\left(x-4\right)x}{x+6}+36\times \frac{x-4}{x+6}}{x^{2}+29x+78}
Izrazite \frac{-12\left(x-4\right)}{x+6}x kao jedan razlomak.
\frac{4,5x^{2}+18x-54+\frac{-3\left(x-4\right)x^{2}}{x+6}+\frac{-12\left(x-4\right)x}{x+6}+\frac{36\left(x-4\right)}{x+6}}{x^{2}+29x+78}
Izrazite 36\times \frac{x-4}{x+6} kao jedan razlomak.
\frac{4,5x^{2}+\frac{\left(18x-54\right)\left(x+6\right)}{x+6}+\frac{-3\left(x-4\right)x^{2}}{x+6}+\frac{-12\left(x-4\right)x}{x+6}+\frac{36\left(x-4\right)}{x+6}}{x^{2}+29x+78}
Da biste izvršili zbrajanje ili oduzimanje izraza, rastavite ih kako bi im nazivnici bili isti. Pomnožite 18x-54 i \frac{x+6}{x+6}.
\frac{4,5x^{2}+\frac{\left(18x-54\right)\left(x+6\right)-3\left(x-4\right)x^{2}}{x+6}+\frac{-12\left(x-4\right)x}{x+6}+\frac{36\left(x-4\right)}{x+6}}{x^{2}+29x+78}
Pošto \frac{\left(18x-54\right)\left(x+6\right)}{x+6} i \frac{-3\left(x-4\right)x^{2}}{x+6} imaju isti imenilac, saberite ih tako što ćete sabrati njihove brojioce.
\frac{4,5x^{2}+\frac{18x^{2}+108x-54x-324-3x^{3}+12x^{2}}{x+6}+\frac{-12\left(x-4\right)x}{x+6}+\frac{36\left(x-4\right)}{x+6}}{x^{2}+29x+78}
Izvršite množenja u \left(18x-54\right)\left(x+6\right)-3\left(x-4\right)x^{2}.
\frac{4,5x^{2}+\frac{30x^{2}+54x-324-3x^{3}}{x+6}+\frac{-12\left(x-4\right)x}{x+6}+\frac{36\left(x-4\right)}{x+6}}{x^{2}+29x+78}
Kombinirajte slične izraze u 18x^{2}+108x-54x-324-3x^{3}+12x^{2}.
\frac{4,5x^{2}+\frac{30x^{2}+54x-324-3x^{3}-12\left(x-4\right)x}{x+6}+\frac{36\left(x-4\right)}{x+6}}{x^{2}+29x+78}
Pošto \frac{30x^{2}+54x-324-3x^{3}}{x+6} i \frac{-12\left(x-4\right)x}{x+6} imaju isti imenilac, saberite ih tako što ćete sabrati njihove brojioce.
\frac{4,5x^{2}+\frac{30x^{2}+54x-324-3x^{3}-12x^{2}+48x}{x+6}+\frac{36\left(x-4\right)}{x+6}}{x^{2}+29x+78}
Izvršite množenja u 30x^{2}+54x-324-3x^{3}-12\left(x-4\right)x.
\frac{4,5x^{2}+\frac{18x^{2}+102x-324-3x^{3}}{x+6}+\frac{36\left(x-4\right)}{x+6}}{x^{2}+29x+78}
Kombinirajte slične izraze u 30x^{2}+54x-324-3x^{3}-12x^{2}+48x.
\frac{4,5x^{2}+\frac{18x^{2}+102x-324-3x^{3}+36\left(x-4\right)}{x+6}}{x^{2}+29x+78}
Pošto \frac{18x^{2}+102x-324-3x^{3}}{x+6} i \frac{36\left(x-4\right)}{x+6} imaju isti imenilac, saberite ih tako što ćete sabrati njihove brojioce.
\frac{4,5x^{2}+\frac{18x^{2}+102x-324-3x^{3}+36x-144}{x+6}}{x^{2}+29x+78}
Izvršite množenja u 18x^{2}+102x-324-3x^{3}+36\left(x-4\right).
\frac{4,5x^{2}+\frac{18x^{2}+138x-468-3x^{3}}{x+6}}{x^{2}+29x+78}
Kombinirajte slične izraze u 18x^{2}+102x-324-3x^{3}+36x-144.
\frac{4,5x^{2}+\frac{3\left(x+6\right)\left(-x^{2}+12x-26\right)}{x+6}}{x^{2}+29x+78}
Faktorirajte izraze koji nisu već faktorirani u \frac{18x^{2}+138x-468-3x^{3}}{x+6}.
\frac{4,5x^{2}+3\left(-x^{2}+12x-26\right)}{x^{2}+29x+78}
Otkaži x+6 u brojiocu i imeniocu.
\frac{4,5x^{2}-3x^{2}+36x-78}{x^{2}+29x+78}
Razvijte izraz.
\frac{1,5x^{2}+36x-78}{x^{2}+29x+78}
Kombinirajte 4,5x^{2} i -3x^{2} da biste dobili 1,5x^{2}.
\frac{3\left(\frac{1}{2}x-1\right)\left(x+26\right)}{\left(x+3\right)\left(x+26\right)}
Faktorirajte izraze koji nisu već faktorirani.
\frac{3\left(\frac{1}{2}x-1\right)}{x+3}
Otkaži x+26 u brojiocu i imeniocu.
\frac{\frac{3}{2}x-3}{x+3}
Razvijte izraz.
\frac{1,5-\left(\frac{x^{4}\left(x^{2}+1\right)}{x^{2}+1}-\frac{x^{4}+1}{x^{2}+1}\right)\times \frac{\left(x^{2}+1\right)\left(x-4\right)}{x^{7}+6x^{6}-x-6}}{\frac{x^{2}+29x+78}{3x^{2}+12x-36}}
Da biste izvršili zbrajanje ili oduzimanje izraza, rastavite ih kako bi im nazivnici bili isti. Pomnožite x^{4} i \frac{x^{2}+1}{x^{2}+1}.
\frac{1,5-\frac{x^{4}\left(x^{2}+1\right)-\left(x^{4}+1\right)}{x^{2}+1}\times \frac{\left(x^{2}+1\right)\left(x-4\right)}{x^{7}+6x^{6}-x-6}}{\frac{x^{2}+29x+78}{3x^{2}+12x-36}}
Pošto \frac{x^{4}\left(x^{2}+1\right)}{x^{2}+1} i \frac{x^{4}+1}{x^{2}+1} imaju isti imenilac, oduzmite ih tako što ćete oduzeti njihove brojioce.
\frac{1,5-\frac{x^{6}+x^{4}-x^{4}-1}{x^{2}+1}\times \frac{\left(x^{2}+1\right)\left(x-4\right)}{x^{7}+6x^{6}-x-6}}{\frac{x^{2}+29x+78}{3x^{2}+12x-36}}
Izvršite množenja u x^{4}\left(x^{2}+1\right)-\left(x^{4}+1\right).
\frac{1,5-\frac{x^{6}-1}{x^{2}+1}\times \frac{\left(x^{2}+1\right)\left(x-4\right)}{x^{7}+6x^{6}-x-6}}{\frac{x^{2}+29x+78}{3x^{2}+12x-36}}
Kombinirajte slične izraze u x^{6}+x^{4}-x^{4}-1.
\frac{1,5-\frac{\left(x^{6}-1\right)\left(x^{2}+1\right)\left(x-4\right)}{\left(x^{2}+1\right)\left(x^{7}+6x^{6}-x-6\right)}}{\frac{x^{2}+29x+78}{3x^{2}+12x-36}}
Pomnožite \frac{x^{6}-1}{x^{2}+1} i \frac{\left(x^{2}+1\right)\left(x-4\right)}{x^{7}+6x^{6}-x-6} tako što ćete pomnožiti brojilac s brojiocem i imenilac s imeniocem.
\frac{1,5-\frac{\left(x-4\right)\left(x^{6}-1\right)}{x^{7}+6x^{6}-x-6}}{\frac{x^{2}+29x+78}{3x^{2}+12x-36}}
Otkaži x^{2}+1 u brojiocu i imeniocu.
\frac{1,5-\frac{\left(x-4\right)\left(x-1\right)\left(x+1\right)\left(x^{2}+x+1\right)\left(x^{2}-x+1\right)}{\left(x-1\right)\left(x+1\right)\left(x+6\right)\left(x^{2}+x+1\right)\left(x^{2}-x+1\right)}}{\frac{x^{2}+29x+78}{3x^{2}+12x-36}}
Faktorirajte izraze koji nisu već faktorirani u \frac{\left(x-4\right)\left(x^{6}-1\right)}{x^{7}+6x^{6}-x-6}.
\frac{1,5-\frac{x-4}{x+6}}{\frac{x^{2}+29x+78}{3x^{2}+12x-36}}
Otkaži \left(x-1\right)\left(x+1\right)\left(x^{2}+x+1\right)\left(x^{2}-x+1\right) u brojiocu i imeniocu.
\frac{\left(1,5-\frac{x-4}{x+6}\right)\left(3x^{2}+12x-36\right)}{x^{2}+29x+78}
Podijelite 1,5-\frac{x-4}{x+6} sa \frac{x^{2}+29x+78}{3x^{2}+12x-36} tako što ćete pomnožiti 1,5-\frac{x-4}{x+6} recipročnom vrijednošću od \frac{x^{2}+29x+78}{3x^{2}+12x-36}.
\frac{4,5x^{2}+18x-54-3\times \frac{x-4}{x+6}x^{2}-12\times \frac{x-4}{x+6}x+36\times \frac{x-4}{x+6}}{x^{2}+29x+78}
Koristite distributivno svojstvo da biste pomnožili 1,5-\frac{x-4}{x+6} sa 3x^{2}+12x-36.
\frac{4,5x^{2}+18x-54+\frac{-3\left(x-4\right)}{x+6}x^{2}-12\times \frac{x-4}{x+6}x+36\times \frac{x-4}{x+6}}{x^{2}+29x+78}
Izrazite -3\times \frac{x-4}{x+6} kao jedan razlomak.
\frac{4,5x^{2}+18x-54+\frac{-3\left(x-4\right)x^{2}}{x+6}-12\times \frac{x-4}{x+6}x+36\times \frac{x-4}{x+6}}{x^{2}+29x+78}
Izrazite \frac{-3\left(x-4\right)}{x+6}x^{2} kao jedan razlomak.
\frac{4,5x^{2}+18x-54+\frac{-3\left(x-4\right)x^{2}}{x+6}+\frac{-12\left(x-4\right)}{x+6}x+36\times \frac{x-4}{x+6}}{x^{2}+29x+78}
Izrazite -12\times \frac{x-4}{x+6} kao jedan razlomak.
\frac{4,5x^{2}+18x-54+\frac{-3\left(x-4\right)x^{2}}{x+6}+\frac{-12\left(x-4\right)x}{x+6}+36\times \frac{x-4}{x+6}}{x^{2}+29x+78}
Izrazite \frac{-12\left(x-4\right)}{x+6}x kao jedan razlomak.
\frac{4,5x^{2}+18x-54+\frac{-3\left(x-4\right)x^{2}}{x+6}+\frac{-12\left(x-4\right)x}{x+6}+\frac{36\left(x-4\right)}{x+6}}{x^{2}+29x+78}
Izrazite 36\times \frac{x-4}{x+6} kao jedan razlomak.
\frac{4,5x^{2}+\frac{\left(18x-54\right)\left(x+6\right)}{x+6}+\frac{-3\left(x-4\right)x^{2}}{x+6}+\frac{-12\left(x-4\right)x}{x+6}+\frac{36\left(x-4\right)}{x+6}}{x^{2}+29x+78}
Da biste izvršili zbrajanje ili oduzimanje izraza, rastavite ih kako bi im nazivnici bili isti. Pomnožite 18x-54 i \frac{x+6}{x+6}.
\frac{4,5x^{2}+\frac{\left(18x-54\right)\left(x+6\right)-3\left(x-4\right)x^{2}}{x+6}+\frac{-12\left(x-4\right)x}{x+6}+\frac{36\left(x-4\right)}{x+6}}{x^{2}+29x+78}
Pošto \frac{\left(18x-54\right)\left(x+6\right)}{x+6} i \frac{-3\left(x-4\right)x^{2}}{x+6} imaju isti imenilac, saberite ih tako što ćete sabrati njihove brojioce.
\frac{4,5x^{2}+\frac{18x^{2}+108x-54x-324-3x^{3}+12x^{2}}{x+6}+\frac{-12\left(x-4\right)x}{x+6}+\frac{36\left(x-4\right)}{x+6}}{x^{2}+29x+78}
Izvršite množenja u \left(18x-54\right)\left(x+6\right)-3\left(x-4\right)x^{2}.
\frac{4,5x^{2}+\frac{30x^{2}+54x-324-3x^{3}}{x+6}+\frac{-12\left(x-4\right)x}{x+6}+\frac{36\left(x-4\right)}{x+6}}{x^{2}+29x+78}
Kombinirajte slične izraze u 18x^{2}+108x-54x-324-3x^{3}+12x^{2}.
\frac{4,5x^{2}+\frac{30x^{2}+54x-324-3x^{3}-12\left(x-4\right)x}{x+6}+\frac{36\left(x-4\right)}{x+6}}{x^{2}+29x+78}
Pošto \frac{30x^{2}+54x-324-3x^{3}}{x+6} i \frac{-12\left(x-4\right)x}{x+6} imaju isti imenilac, saberite ih tako što ćete sabrati njihove brojioce.
\frac{4,5x^{2}+\frac{30x^{2}+54x-324-3x^{3}-12x^{2}+48x}{x+6}+\frac{36\left(x-4\right)}{x+6}}{x^{2}+29x+78}
Izvršite množenja u 30x^{2}+54x-324-3x^{3}-12\left(x-4\right)x.
\frac{4,5x^{2}+\frac{18x^{2}+102x-324-3x^{3}}{x+6}+\frac{36\left(x-4\right)}{x+6}}{x^{2}+29x+78}
Kombinirajte slične izraze u 30x^{2}+54x-324-3x^{3}-12x^{2}+48x.
\frac{4,5x^{2}+\frac{18x^{2}+102x-324-3x^{3}+36\left(x-4\right)}{x+6}}{x^{2}+29x+78}
Pošto \frac{18x^{2}+102x-324-3x^{3}}{x+6} i \frac{36\left(x-4\right)}{x+6} imaju isti imenilac, saberite ih tako što ćete sabrati njihove brojioce.
\frac{4,5x^{2}+\frac{18x^{2}+102x-324-3x^{3}+36x-144}{x+6}}{x^{2}+29x+78}
Izvršite množenja u 18x^{2}+102x-324-3x^{3}+36\left(x-4\right).
\frac{4,5x^{2}+\frac{18x^{2}+138x-468-3x^{3}}{x+6}}{x^{2}+29x+78}
Kombinirajte slične izraze u 18x^{2}+102x-324-3x^{3}+36x-144.
\frac{4,5x^{2}+\frac{3\left(x+6\right)\left(-x^{2}+12x-26\right)}{x+6}}{x^{2}+29x+78}
Faktorirajte izraze koji nisu već faktorirani u \frac{18x^{2}+138x-468-3x^{3}}{x+6}.
\frac{4,5x^{2}+3\left(-x^{2}+12x-26\right)}{x^{2}+29x+78}
Otkaži x+6 u brojiocu i imeniocu.
\frac{4,5x^{2}-3x^{2}+36x-78}{x^{2}+29x+78}
Razvijte izraz.
\frac{1,5x^{2}+36x-78}{x^{2}+29x+78}
Kombinirajte 4,5x^{2} i -3x^{2} da biste dobili 1,5x^{2}.
\frac{3\left(\frac{1}{2}x-1\right)\left(x+26\right)}{\left(x+3\right)\left(x+26\right)}
Faktorirajte izraze koji nisu već faktorirani.
\frac{3\left(\frac{1}{2}x-1\right)}{x+3}
Otkaži x+26 u brojiocu i imeniocu.
\frac{\frac{3}{2}x-3}{x+3}
Razvijte izraz.