Procijeni
-\frac{3x}{2}-\frac{17}{6}
Faktor
\frac{-9x-17}{6}
Graf
Dijeliti
Kopirano u clipboard
3-2\times \left(\frac{1}{2}\right)^{2}-\frac{3}{4}x\left(\sqrt{2}\right)^{2}-4\times \left(\frac{2}{\sqrt{3}}\right)^{2}
Kvadrat broja \sqrt{3} je 3.
3-2\times \frac{1}{4}-\frac{3}{4}x\left(\sqrt{2}\right)^{2}-4\times \left(\frac{2}{\sqrt{3}}\right)^{2}
Izračunajte \frac{1}{2} stepen od 2 i dobijte \frac{1}{4}.
3-\frac{1}{2}-\frac{3}{4}x\left(\sqrt{2}\right)^{2}-4\times \left(\frac{2}{\sqrt{3}}\right)^{2}
Pomnožite 2 i \frac{1}{4} da biste dobili \frac{1}{2}.
\frac{5}{2}-\frac{3}{4}x\left(\sqrt{2}\right)^{2}-4\times \left(\frac{2}{\sqrt{3}}\right)^{2}
Oduzmite \frac{1}{2} od 3 da biste dobili \frac{5}{2}.
\frac{5}{2}-\frac{3}{4}x\times 2-4\times \left(\frac{2}{\sqrt{3}}\right)^{2}
Kvadrat broja \sqrt{2} je 2.
\frac{5}{2}-\frac{3}{2}x-4\times \left(\frac{2}{\sqrt{3}}\right)^{2}
Pomnožite \frac{3}{4} i 2 da biste dobili \frac{3}{2}.
\frac{5}{2}-\frac{3}{2}x-4\times \left(\frac{2\sqrt{3}}{\left(\sqrt{3}\right)^{2}}\right)^{2}
Racionalizirajte imenilac broja \frac{2}{\sqrt{3}} tako što ćete pomnožiti brojilac i imenilac sa \sqrt{3}.
\frac{5}{2}-\frac{3}{2}x-4\times \left(\frac{2\sqrt{3}}{3}\right)^{2}
Kvadrat broja \sqrt{3} je 3.
\frac{5}{2}-\frac{3}{2}x-4\times \frac{\left(2\sqrt{3}\right)^{2}}{3^{2}}
Da biste podigli \frac{2\sqrt{3}}{3} na potenciju, dignite brojnik i nazivnik na potenciju i zatim podijelite.
\frac{5}{2}-\frac{3}{2}x-\frac{4\times \left(2\sqrt{3}\right)^{2}}{3^{2}}
Izrazite 4\times \frac{\left(2\sqrt{3}\right)^{2}}{3^{2}} kao jedan razlomak.
\frac{5}{2}-\frac{3}{2}x-\frac{4\times 2^{2}\left(\sqrt{3}\right)^{2}}{3^{2}}
Proširite \left(2\sqrt{3}\right)^{2}.
\frac{5}{2}-\frac{3}{2}x-\frac{4\times 4\left(\sqrt{3}\right)^{2}}{3^{2}}
Izračunajte 2 stepen od 2 i dobijte 4.
\frac{5}{2}-\frac{3}{2}x-\frac{4\times 4\times 3}{3^{2}}
Kvadrat broja \sqrt{3} je 3.
\frac{5}{2}-\frac{3}{2}x-\frac{4\times 12}{3^{2}}
Pomnožite 4 i 3 da biste dobili 12.
\frac{5}{2}-\frac{3}{2}x-\frac{48}{3^{2}}
Pomnožite 4 i 12 da biste dobili 48.
\frac{5}{2}-\frac{3}{2}x-\frac{48}{9}
Izračunajte 3 stepen od 2 i dobijte 9.
\frac{5}{2}-\frac{3}{2}x-\frac{16}{3}
Svedite razlomak \frac{48}{9} na najprostije elemente rastavlјanjem i kraćenjem 3.
-\frac{17}{6}-\frac{3}{2}x
Oduzmite \frac{16}{3} od \frac{5}{2} da biste dobili -\frac{17}{6}.
factor(3-2\times \left(\frac{1}{2}\right)^{2}-\frac{3}{4}x\left(\sqrt{2}\right)^{2}-4\times \left(\frac{2}{\sqrt{3}}\right)^{2})
Kvadrat broja \sqrt{3} je 3.
factor(3-2\times \frac{1}{4}-\frac{3}{4}x\left(\sqrt{2}\right)^{2}-4\times \left(\frac{2}{\sqrt{3}}\right)^{2})
Izračunajte \frac{1}{2} stepen od 2 i dobijte \frac{1}{4}.
factor(3-\frac{1}{2}-\frac{3}{4}x\left(\sqrt{2}\right)^{2}-4\times \left(\frac{2}{\sqrt{3}}\right)^{2})
Pomnožite 2 i \frac{1}{4} da biste dobili \frac{1}{2}.
factor(\frac{5}{2}-\frac{3}{4}x\left(\sqrt{2}\right)^{2}-4\times \left(\frac{2}{\sqrt{3}}\right)^{2})
Oduzmite \frac{1}{2} od 3 da biste dobili \frac{5}{2}.
factor(\frac{5}{2}-\frac{3}{4}x\times 2-4\times \left(\frac{2}{\sqrt{3}}\right)^{2})
Kvadrat broja \sqrt{2} je 2.
factor(\frac{5}{2}-\frac{3}{2}x-4\times \left(\frac{2}{\sqrt{3}}\right)^{2})
Pomnožite \frac{3}{4} i 2 da biste dobili \frac{3}{2}.
factor(\frac{5}{2}-\frac{3}{2}x-4\times \left(\frac{2\sqrt{3}}{\left(\sqrt{3}\right)^{2}}\right)^{2})
Racionalizirajte imenilac broja \frac{2}{\sqrt{3}} tako što ćete pomnožiti brojilac i imenilac sa \sqrt{3}.
factor(\frac{5}{2}-\frac{3}{2}x-4\times \left(\frac{2\sqrt{3}}{3}\right)^{2})
Kvadrat broja \sqrt{3} je 3.
factor(\frac{5}{2}-\frac{3}{2}x-4\times \frac{\left(2\sqrt{3}\right)^{2}}{3^{2}})
Da biste podigli \frac{2\sqrt{3}}{3} na potenciju, dignite brojnik i nazivnik na potenciju i zatim podijelite.
factor(\frac{5}{2}-\frac{3}{2}x-\frac{4\times \left(2\sqrt{3}\right)^{2}}{3^{2}})
Izrazite 4\times \frac{\left(2\sqrt{3}\right)^{2}}{3^{2}} kao jedan razlomak.
factor(\frac{5}{2}-\frac{3}{2}x-\frac{4\times 2^{2}\left(\sqrt{3}\right)^{2}}{3^{2}})
Proširite \left(2\sqrt{3}\right)^{2}.
factor(\frac{5}{2}-\frac{3}{2}x-\frac{4\times 4\left(\sqrt{3}\right)^{2}}{3^{2}})
Izračunajte 2 stepen od 2 i dobijte 4.
factor(\frac{5}{2}-\frac{3}{2}x-\frac{4\times 4\times 3}{3^{2}})
Kvadrat broja \sqrt{3} je 3.
factor(\frac{5}{2}-\frac{3}{2}x-\frac{4\times 12}{3^{2}})
Pomnožite 4 i 3 da biste dobili 12.
factor(\frac{5}{2}-\frac{3}{2}x-\frac{48}{3^{2}})
Pomnožite 4 i 12 da biste dobili 48.
factor(\frac{5}{2}-\frac{3}{2}x-\frac{48}{9})
Izračunajte 3 stepen od 2 i dobijte 9.
factor(\frac{5}{2}-\frac{3}{2}x-\frac{16}{3})
Svedite razlomak \frac{48}{9} na najprostije elemente rastavlјanjem i kraćenjem 3.
factor(-\frac{17}{6}-\frac{3}{2}x)
Oduzmite \frac{16}{3} od \frac{5}{2} da biste dobili -\frac{17}{6}.
\frac{-17-9x}{6}
Izbacite \frac{1}{6}.
Primjeri
kvadratna jednacina
{ x } ^ { 2 } - 4 x - 5 = 0
trigonometrija
4 \sin \theta \cos \theta = 2 \sin \theta
Linearna jednačina
y = 3x + 4
Aritmetika
699 * 533
Matrica
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultana jednačina
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferencijacija
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integracija
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Granice
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}