x এর জন্য সমাধান করুন (complex solution)
x=\frac{-2+\sqrt{14}i}{3}\approx -0.666666667+1.247219129i
x=\frac{-\sqrt{14}i-2}{3}\approx -0.666666667-1.247219129i
গ্রাফ
কুইজ
Quadratic Equation
এর অনুরূপ 5টি প্রশ্ন:
x ^ { 2 } - 4 ( x ^ { 2 } + x + 2 ) = 3 x ^ { 2 } + 4 x + 4
শেয়ার করুন
ক্লিপবোর্ডে কপি করা হয়েছে
x^{2}-4x^{2}-4x-8=3x^{2}+4x+4
-4 কে x^{2}+x+2 দিয়ে গুণ করতে ডিস্ট্রিবিউটিভ প্রোপার্টি ব্যবহার করুন।
-3x^{2}-4x-8=3x^{2}+4x+4
-3x^{2} পেতে x^{2} এবং -4x^{2} একত্রিত করুন।
-3x^{2}-4x-8-3x^{2}=4x+4
উভয় দিক থেকে 3x^{2} বিয়োগ করুন।
-6x^{2}-4x-8=4x+4
-6x^{2} পেতে -3x^{2} এবং -3x^{2} একত্রিত করুন।
-6x^{2}-4x-8-4x=4
উভয় দিক থেকে 4x বিয়োগ করুন।
-6x^{2}-8x-8=4
-8x পেতে -4x এবং -4x একত্রিত করুন।
-6x^{2}-8x-8-4=0
উভয় দিক থেকে 4 বিয়োগ করুন।
-6x^{2}-8x-12=0
-12 পেতে -8 থেকে 4 বাদ দিন।
x=\frac{-\left(-8\right)±\sqrt{\left(-8\right)^{2}-4\left(-6\right)\left(-12\right)}}{2\left(-6\right)}
এই সমীকরণটি আদর্শ আকারের: ax^{2}+bx+c=0। দ্বিঘাত সূত্রে a এর জন্য -6, b এর জন্য -8 এবং c এর জন্য -12 বিকল্প নিন, \frac{-b±\sqrt{b^{2}-4ac}}{2a}৷
x=\frac{-\left(-8\right)±\sqrt{64-4\left(-6\right)\left(-12\right)}}{2\left(-6\right)}
-8 এর বর্গ
x=\frac{-\left(-8\right)±\sqrt{64+24\left(-12\right)}}{2\left(-6\right)}
-4 কে -6 বার গুণ করুন।
x=\frac{-\left(-8\right)±\sqrt{64-288}}{2\left(-6\right)}
24 কে -12 বার গুণ করুন।
x=\frac{-\left(-8\right)±\sqrt{-224}}{2\left(-6\right)}
-288 এ 64 যোগ করুন।
x=\frac{-\left(-8\right)±4\sqrt{14}i}{2\left(-6\right)}
-224 এর স্কোয়ার রুট নিন।
x=\frac{8±4\sqrt{14}i}{2\left(-6\right)}
-8-এর বিপরীত হলো 8।
x=\frac{8±4\sqrt{14}i}{-12}
2 কে -6 বার গুণ করুন।
x=\frac{8+4\sqrt{14}i}{-12}
এখন সমীকরণটি সমাধান করুন x=\frac{8±4\sqrt{14}i}{-12} যখন ± হল যোগ৷ 4i\sqrt{14} এ 8 যোগ করুন।
x=\frac{-\sqrt{14}i-2}{3}
8+4i\sqrt{14} কে -12 দিয়ে ভাগ করুন।
x=\frac{-4\sqrt{14}i+8}{-12}
এখন সমীকরণটি সমাধান করুন x=\frac{8±4\sqrt{14}i}{-12} যখন ± হল বিয়োগ৷ 8 থেকে 4i\sqrt{14} বাদ দিন।
x=\frac{-2+\sqrt{14}i}{3}
8-4i\sqrt{14} কে -12 দিয়ে ভাগ করুন।
x=\frac{-\sqrt{14}i-2}{3} x=\frac{-2+\sqrt{14}i}{3}
সমীকরণটি এখন সমাধান করা হয়েছে।
x^{2}-4x^{2}-4x-8=3x^{2}+4x+4
-4 কে x^{2}+x+2 দিয়ে গুণ করতে ডিস্ট্রিবিউটিভ প্রোপার্টি ব্যবহার করুন।
-3x^{2}-4x-8=3x^{2}+4x+4
-3x^{2} পেতে x^{2} এবং -4x^{2} একত্রিত করুন।
-3x^{2}-4x-8-3x^{2}=4x+4
উভয় দিক থেকে 3x^{2} বিয়োগ করুন।
-6x^{2}-4x-8=4x+4
-6x^{2} পেতে -3x^{2} এবং -3x^{2} একত্রিত করুন।
-6x^{2}-4x-8-4x=4
উভয় দিক থেকে 4x বিয়োগ করুন।
-6x^{2}-8x-8=4
-8x পেতে -4x এবং -4x একত্রিত করুন।
-6x^{2}-8x=4+8
উভয় সাইডে 8 যোগ করুন৷
-6x^{2}-8x=12
12 পেতে 4 এবং 8 যোগ করুন।
\frac{-6x^{2}-8x}{-6}=\frac{12}{-6}
-6 দিয়ে উভয় দিককে ভাগ করুন।
x^{2}+\left(-\frac{8}{-6}\right)x=\frac{12}{-6}
-6 দিয়ে ভাগ করে -6 দিয়ে গুণ করে আগের অবস্থায় আনুন।
x^{2}+\frac{4}{3}x=\frac{12}{-6}
2 -কে নির্গমন ও বাতিল করার মাধ্যমে \frac{-8}{-6} ভগ্নাংশটি সর্বনিম্ন টার্মে কমিয়ে আনুন।
x^{2}+\frac{4}{3}x=-2
12 কে -6 দিয়ে ভাগ করুন।
x^{2}+\frac{4}{3}x+\left(\frac{2}{3}\right)^{2}=-2+\left(\frac{2}{3}\right)^{2}
\frac{2}{3} পেতে x টার্মের গুণাঙ্ক \frac{4}{3}-কে 2 দিয়ে ভাগ করুন। তারপর সমীকরণের উভয় দিকে \frac{2}{3}-এর বর্গ যোগ করুন। এই ধাপে সমীকরণের বামদিক সম্পূর্ণ বর্গ হবে।
x^{2}+\frac{4}{3}x+\frac{4}{9}=-2+\frac{4}{9}
ভগ্নাংশের লব ও হরের বর্গ করার মাধ্যমে \frac{2}{3} এর বর্গ করুন।
x^{2}+\frac{4}{3}x+\frac{4}{9}=-\frac{14}{9}
\frac{4}{9} এ -2 যোগ করুন।
\left(x+\frac{2}{3}\right)^{2}=-\frac{14}{9}
x^{2}+\frac{4}{3}x+\frac{4}{9} কে ভাঙুন। সাধারণভাবে, x^{2}+bx+c হল সম্পূর্ণ বর্গ, এটিকে এইভাবে গুণনীয়ক করা যায়: \left(x+\frac{b}{2}\right)^{2}।
\sqrt{\left(x+\frac{2}{3}\right)^{2}}=\sqrt{-\frac{14}{9}}
সমীকরণের উভয় দিকে স্কোয়ার রুট ব্যবহার করুন।
x+\frac{2}{3}=\frac{\sqrt{14}i}{3} x+\frac{2}{3}=-\frac{\sqrt{14}i}{3}
সিমপ্লিফাই।
x=\frac{-2+\sqrt{14}i}{3} x=\frac{-\sqrt{14}i-2}{3}
সমীকরণের উভয় দিক থেকে \frac{2}{3} বাদ দিন।
উদাহরণ
দ্বিঘাত সমীকরণ
{ x } ^ { 2 } - 4 x - 5 = 0
ত্রিকোণমিতি
4 \sin \theta \cos \theta = 2 \sin \theta
রৈখিক সমীকরণ
y = 3x + 4
পাটিগণিত
699 * 533
মেট্রিক্স
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
সমকালীন সমীকরণ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ডিফারেন্সিয়েশন
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ইন্টিগ্রেশন
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
লিমিট
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}