x এর জন্য সমাধান করুন
x = -\frac{5}{3} = -1\frac{2}{3} \approx -1.666666667
x=1
গ্রাফ
শেয়ার করুন
ক্লিপবোর্ডে কপি করা হয়েছে
3x^{2}+2x-5=0
2 দিয়ে উভয় দিককে ভাগ করুন।
a+b=2 ab=3\left(-5\right)=-15
সমীকরণটি সমাধান করতে, গোষ্ঠীভুক্ত করার মাধ্যমে বাম দিকেরটি গুণনীয়ক করুন। প্রথমত, বাম দিকেরটি 3x^{2}+ax+bx-5 হিসাবে আবার লিখতে হবে। a এবং b খুঁজতে, সমাধান করতে হবে এমন একটি সিস্টেম সেট আপ করুন।
-1,15 -3,5
যেহেতু ab হল ঋণাত্মক, তাই a এবং b-এর একই বিপরীত প্রতীকগুলো থাকে। যেহেতু a+b হল ধনাত্মক, তাই ঋণাত্মকটির তুলনায় ধনাত্মক সংখ্যাটির পরম মান বৃহত্তর হয়। এই জাতীয় সমস্ত জোড়া তালিকাবদ্ধ করুন যা পণ্য -15 প্রদান করে।
-1+15=14 -3+5=2
প্রতিটি জোড়ার জন্য যোগফল গণনা করুন।
a=-3 b=5
সমাধানটি হল সেই জোড়া যা 2 যোগফল প্রদান করে।
\left(3x^{2}-3x\right)+\left(5x-5\right)
\left(3x^{2}-3x\right)+\left(5x-5\right) হিসেবে 3x^{2}+2x-5 পুনরায় লিখুন৷
3x\left(x-1\right)+5\left(x-1\right)
প্রথম গোষ্ঠীতে 3x এবং দ্বিতীয় গোষ্ঠীতে 5 ফ্যাক্টর আউট।
\left(x-1\right)\left(3x+5\right)
ডিস্ট্রিবিউটিভ প্রোপার্টি ব্যবহার করে সাধারণ টার্ম x-1 ফ্যাক্টর আউট করুন।
x=1 x=-\frac{5}{3}
সমীকরণের সমাধানগুলো খুঁজতে, x-1=0 এবং 3x+5=0 সমাধান করুন।
6x^{2}+4x-10=0
ফর্মের সমস্ত সমীকরণ ax^{2}+bx+c=0 দ্বিঘাত সূত্র ব্যবহার করে সমাধান করা যেতে পারে: \frac{-b±\sqrt{b^{2}-4ac}}{2a}। দ্বিঘাত সূত্র দুটি সমাধান দেয়, যখন ± যোগ করা হয় এবং যখন এটি বিয়োগ করা হয়।
x=\frac{-4±\sqrt{4^{2}-4\times 6\left(-10\right)}}{2\times 6}
এই সমীকরণটি আদর্শ আকারের: ax^{2}+bx+c=0। দ্বিঘাত সূত্রে a এর জন্য 6, b এর জন্য 4 এবং c এর জন্য -10 বিকল্প নিন, \frac{-b±\sqrt{b^{2}-4ac}}{2a}৷
x=\frac{-4±\sqrt{16-4\times 6\left(-10\right)}}{2\times 6}
4 এর বর্গ
x=\frac{-4±\sqrt{16-24\left(-10\right)}}{2\times 6}
-4 কে 6 বার গুণ করুন।
x=\frac{-4±\sqrt{16+240}}{2\times 6}
-24 কে -10 বার গুণ করুন।
x=\frac{-4±\sqrt{256}}{2\times 6}
240 এ 16 যোগ করুন।
x=\frac{-4±16}{2\times 6}
256 এর স্কোয়ার রুট নিন।
x=\frac{-4±16}{12}
2 কে 6 বার গুণ করুন।
x=\frac{12}{12}
এখন সমীকরণটি সমাধান করুন x=\frac{-4±16}{12} যখন ± হল যোগ৷ 16 এ -4 যোগ করুন।
x=1
12 কে 12 দিয়ে ভাগ করুন।
x=-\frac{20}{12}
এখন সমীকরণটি সমাধান করুন x=\frac{-4±16}{12} যখন ± হল বিয়োগ৷ -4 থেকে 16 বাদ দিন।
x=-\frac{5}{3}
4 -কে নির্গমন ও বাতিল করার মাধ্যমে \frac{-20}{12} ভগ্নাংশটি সর্বনিম্ন টার্মে কমিয়ে আনুন।
x=1 x=-\frac{5}{3}
সমীকরণটি এখন সমাধান করা হয়েছে।
6x^{2}+4x-10=0
দ্বিঘাত সমীকরণ যেমন এটিকে বর্গ করে সমাধান করা যেতে পারে। বর্গ সম্পূর্ণ করতে সমীকরণটিকে অবশ্যই এইরকম হতে হবে:x^{2}+bx=c।
6x^{2}+4x-10-\left(-10\right)=-\left(-10\right)
সমীকরণের উভয় দিকে 10 যোগ করুন।
6x^{2}+4x=-\left(-10\right)
-10 কে তার থেকে বাদ দিলে 0 পড়ে থাকে।
6x^{2}+4x=10
0 থেকে -10 বাদ দিন।
\frac{6x^{2}+4x}{6}=\frac{10}{6}
6 দিয়ে উভয় দিককে ভাগ করুন।
x^{2}+\frac{4}{6}x=\frac{10}{6}
6 দিয়ে ভাগ করে 6 দিয়ে গুণ করে আগের অবস্থায় আনুন।
x^{2}+\frac{2}{3}x=\frac{10}{6}
2 -কে নির্গমন ও বাতিল করার মাধ্যমে \frac{4}{6} ভগ্নাংশটি সর্বনিম্ন টার্মে কমিয়ে আনুন।
x^{2}+\frac{2}{3}x=\frac{5}{3}
2 -কে নির্গমন ও বাতিল করার মাধ্যমে \frac{10}{6} ভগ্নাংশটি সর্বনিম্ন টার্মে কমিয়ে আনুন।
x^{2}+\frac{2}{3}x+\left(\frac{1}{3}\right)^{2}=\frac{5}{3}+\left(\frac{1}{3}\right)^{2}
\frac{1}{3} পেতে x টার্মের গুণাঙ্ক \frac{2}{3}-কে 2 দিয়ে ভাগ করুন। তারপর সমীকরণের উভয় দিকে \frac{1}{3}-এর বর্গ যোগ করুন। এই ধাপে সমীকরণের বামদিক সম্পূর্ণ বর্গ হবে।
x^{2}+\frac{2}{3}x+\frac{1}{9}=\frac{5}{3}+\frac{1}{9}
ভগ্নাংশের লব ও হরের বর্গ করার মাধ্যমে \frac{1}{3} এর বর্গ করুন।
x^{2}+\frac{2}{3}x+\frac{1}{9}=\frac{16}{9}
কমন হর খুঁজে এবং লব যোগ করার মাধ্যমে \frac{1}{9} এ \frac{5}{3} যোগ করুন। তারপর সম্ভব হলে ভগ্নাংশটিকে ছোট টার্মে হ্রাস করুন।
\left(x+\frac{1}{3}\right)^{2}=\frac{16}{9}
x^{2}+\frac{2}{3}x+\frac{1}{9} কে ভাঙুন। সাধারণভাবে, x^{2}+bx+c হল সম্পূর্ণ বর্গ, এটিকে এইভাবে গুণনীয়ক করা যায়: \left(x+\frac{b}{2}\right)^{2}।
\sqrt{\left(x+\frac{1}{3}\right)^{2}}=\sqrt{\frac{16}{9}}
সমীকরণের উভয় দিকে স্কোয়ার রুট ব্যবহার করুন।
x+\frac{1}{3}=\frac{4}{3} x+\frac{1}{3}=-\frac{4}{3}
সিমপ্লিফাই।
x=1 x=-\frac{5}{3}
সমীকরণের উভয় দিক থেকে \frac{1}{3} বাদ দিন।
উদাহরণ
দ্বিঘাত সমীকরণ
{ x } ^ { 2 } - 4 x - 5 = 0
ত্রিকোণমিতি
4 \sin \theta \cos \theta = 2 \sin \theta
রৈখিক সমীকরণ
y = 3x + 4
পাটিগণিত
699 * 533
মেট্রিক্স
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
সমকালীন সমীকরণ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ডিফারেন্সিয়েশন
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ইন্টিগ্রেশন
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
লিমিট
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}