মূল বিষয়বস্তুতে এড়িয়ে যান
ভাঙা
Tick mark Image
মূল্যায়ন করুন
Tick mark Image
গ্রাফ

ওয়েব সন্ধান থেকে অনুরূপ প্রশ্নাবলী

শেয়ার করুন

a+b=-16 ab=4\times 15=60
গোষ্ঠীভুক্ত করার মাধ্যমে অভিব্যক্তিটি গুণনীয়ক করুন। প্রথমত, অভিব্যক্তিটি 4x^{2}+ax+bx+15 হিসাবে পুনরায় লিখতে হবে। a এবং b খুঁজতে, সমাধান করতে হবে এমন একটি সিস্টেম সেট আপ করুন।
-1,-60 -2,-30 -3,-20 -4,-15 -5,-12 -6,-10
যেহেতু ab হল ধনাত্মক, তাই a এবং b-এর একই প্রতীক রয়েছে। যেহেতু a+b হল ঋণাত্মক, তাই a এবং b উভয়ই ঋণাত্মক হয়। এই জাতীয় সমস্ত জোড়া তালিকাবদ্ধ করুন যা পণ্য 60 প্রদান করে।
-1-60=-61 -2-30=-32 -3-20=-23 -4-15=-19 -5-12=-17 -6-10=-16
প্রতিটি জোড়ার জন্য যোগফল গণনা করুন।
a=-10 b=-6
সমাধানটি হল সেই জোড়া যা -16 যোগফল প্রদান করে।
\left(4x^{2}-10x\right)+\left(-6x+15\right)
\left(4x^{2}-10x\right)+\left(-6x+15\right) হিসেবে 4x^{2}-16x+15 পুনরায় লিখুন৷
2x\left(2x-5\right)-3\left(2x-5\right)
প্রথম গোষ্ঠীতে 2x এবং দ্বিতীয় গোষ্ঠীতে -3 ফ্যাক্টর আউট।
\left(2x-5\right)\left(2x-3\right)
ডিস্ট্রিবিউটিভ প্রোপার্টি ব্যবহার করে সাধারণ টার্ম 2x-5 ফ্যাক্টর আউট করুন।
4x^{2}-16x+15=0
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ট্রান্সফর্মেশনটি ব্যবহার করে দ্বিঘাত বহুপদ গুণনীয়ক করা যেতে পারে, যেখানে x_{1} এবং x_{2} হলো ax^{2}+bx+c=0 দ্বিঘাত সমীকরণের সমাধান।
x=\frac{-\left(-16\right)±\sqrt{\left(-16\right)^{2}-4\times 4\times 15}}{2\times 4}
ফর্মের সমস্ত সমীকরণ ax^{2}+bx+c=0 দ্বিঘাত সূত্র ব্যবহার করে সমাধান করা যেতে পারে: \frac{-b±\sqrt{b^{2}-4ac}}{2a}। দ্বিঘাত সূত্র দুটি সমাধান দেয়, যখন ± যোগ করা হয় এবং যখন এটি বিয়োগ করা হয়।
x=\frac{-\left(-16\right)±\sqrt{256-4\times 4\times 15}}{2\times 4}
-16 এর বর্গ
x=\frac{-\left(-16\right)±\sqrt{256-16\times 15}}{2\times 4}
-4 কে 4 বার গুণ করুন।
x=\frac{-\left(-16\right)±\sqrt{256-240}}{2\times 4}
-16 কে 15 বার গুণ করুন।
x=\frac{-\left(-16\right)±\sqrt{16}}{2\times 4}
-240 এ 256 যোগ করুন।
x=\frac{-\left(-16\right)±4}{2\times 4}
16 এর স্কোয়ার রুট নিন।
x=\frac{16±4}{2\times 4}
-16-এর বিপরীত হলো 16।
x=\frac{16±4}{8}
2 কে 4 বার গুণ করুন।
x=\frac{20}{8}
এখন সমীকরণটি সমাধান করুন x=\frac{16±4}{8} যখন ± হল যোগ৷ 4 এ 16 যোগ করুন।
x=\frac{5}{2}
4 -কে নির্গমন ও বাতিল করার মাধ্যমে \frac{20}{8} ভগ্নাংশটি সর্বনিম্ন টার্মে কমিয়ে আনুন।
x=\frac{12}{8}
এখন সমীকরণটি সমাধান করুন x=\frac{16±4}{8} যখন ± হল বিয়োগ৷ 16 থেকে 4 বাদ দিন।
x=\frac{3}{2}
4 -কে নির্গমন ও বাতিল করার মাধ্যমে \frac{12}{8} ভগ্নাংশটি সর্বনিম্ন টার্মে কমিয়ে আনুন।
4x^{2}-16x+15=4\left(x-\frac{5}{2}\right)\left(x-\frac{3}{2}\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ব্যাবহার করে প্রকৃত প্ররাশিটি গুণনীয়ক করুন। x_{1} এর ক্ষেত্রে বিকল্প \frac{5}{2} ও x_{2} এর ক্ষেত্রে বিকল্প \frac{3}{2}
4x^{2}-16x+15=4\times \frac{2x-5}{2}\left(x-\frac{3}{2}\right)
কমন হর খুঁজে এবং লব বিয়োগ করার মাধ্যমে x থেকে \frac{5}{2} বিয়োগ করুন। তারপর সম্ভব হলে ভগ্নাংশটিকে ছোট টার্মে হ্রাস করুন।
4x^{2}-16x+15=4\times \frac{2x-5}{2}\times \frac{2x-3}{2}
কমন হর খুঁজে এবং লব বিয়োগ করার মাধ্যমে x থেকে \frac{3}{2} বিয়োগ করুন। তারপর সম্ভব হলে ভগ্নাংশটিকে ছোট টার্মে হ্রাস করুন।
4x^{2}-16x+15=4\times \frac{\left(2x-5\right)\left(2x-3\right)}{2\times 2}
লবকে তার মানের সম পরিমাণ বার এবং হরকে তার মানের সম পরিমাণ বার গুণ করার মাধ্যমে \frac{2x-5}{2} কে \frac{2x-3}{2} বার গুণ করুন। তারপর সম্ভব হলে ভগ্নাংশটিকে ছোট টার্মে হ্রাস করুন।
4x^{2}-16x+15=4\times \frac{\left(2x-5\right)\left(2x-3\right)}{4}
2 কে 2 বার গুণ করুন।
4x^{2}-16x+15=\left(2x-5\right)\left(2x-3\right)
4 এবং 4 এর মধ্যে সর্বাধিক প্রচলিত ফ্যাক্টর 4 বাতিল করা হয়েছে৷