মূল বিষয়বস্তুতে এড়িয়ে যান
ভাঙা
Tick mark Image
মূল্যায়ন করুন
Tick mark Image
গ্রাফ

ওয়েব সন্ধান থেকে অনুরূপ প্রশ্নাবলী

শেয়ার করুন

2\left(2x^{2}+3x-20\right)
ফ্যাক্টর আউট 2।
a+b=3 ab=2\left(-20\right)=-40
বিবেচনা করুন 2x^{2}+3x-20। গোষ্ঠীভুক্ত করার মাধ্যমে অভিব্যক্তিটি গুণনীয়ক করুন। প্রথমত, অভিব্যক্তিটি 2x^{2}+ax+bx-20 হিসাবে পুনরায় লিখতে হবে। a এবং b খুঁজতে, সমাধান করতে হবে এমন একটি সিস্টেম সেট আপ করুন।
-1,40 -2,20 -4,10 -5,8
যেহেতু ab হল ঋণাত্মক, তাই a এবং b-এর একই বিপরীত প্রতীকগুলো থাকে। যেহেতু a+b হল ধনাত্মক, তাই ঋণাত্মকটির তুলনায় ধনাত্মক সংখ্যাটির পরম মান বৃহত্তর হয়। এই জাতীয় সমস্ত জোড়া তালিকাবদ্ধ করুন যা পণ্য -40 প্রদান করে।
-1+40=39 -2+20=18 -4+10=6 -5+8=3
প্রতিটি জোড়ার জন্য যোগফল গণনা করুন।
a=-5 b=8
সমাধানটি হল সেই জোড়া যা 3 যোগফল প্রদান করে।
\left(2x^{2}-5x\right)+\left(8x-20\right)
\left(2x^{2}-5x\right)+\left(8x-20\right) হিসেবে 2x^{2}+3x-20 পুনরায় লিখুন৷
x\left(2x-5\right)+4\left(2x-5\right)
প্রথম গোষ্ঠীতে x এবং দ্বিতীয় গোষ্ঠীতে 4 ফ্যাক্টর আউট।
\left(2x-5\right)\left(x+4\right)
ডিস্ট্রিবিউটিভ প্রোপার্টি ব্যবহার করে সাধারণ টার্ম 2x-5 ফ্যাক্টর আউট করুন।
2\left(2x-5\right)\left(x+4\right)
সম্পূর্ণ গুণনীয়ক অভিব্যক্তিটি আবার লিখুন।
4x^{2}+6x-40=0
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ট্রান্সফর্মেশনটি ব্যবহার করে দ্বিঘাত বহুপদ গুণনীয়ক করা যেতে পারে, যেখানে x_{1} এবং x_{2} হলো ax^{2}+bx+c=0 দ্বিঘাত সমীকরণের সমাধান।
x=\frac{-6±\sqrt{6^{2}-4\times 4\left(-40\right)}}{2\times 4}
ফর্মের সমস্ত সমীকরণ ax^{2}+bx+c=0 দ্বিঘাত সূত্র ব্যবহার করে সমাধান করা যেতে পারে: \frac{-b±\sqrt{b^{2}-4ac}}{2a}। দ্বিঘাত সূত্র দুটি সমাধান দেয়, যখন ± যোগ করা হয় এবং যখন এটি বিয়োগ করা হয়।
x=\frac{-6±\sqrt{36-4\times 4\left(-40\right)}}{2\times 4}
6 এর বর্গ
x=\frac{-6±\sqrt{36-16\left(-40\right)}}{2\times 4}
-4 কে 4 বার গুণ করুন।
x=\frac{-6±\sqrt{36+640}}{2\times 4}
-16 কে -40 বার গুণ করুন।
x=\frac{-6±\sqrt{676}}{2\times 4}
640 এ 36 যোগ করুন।
x=\frac{-6±26}{2\times 4}
676 এর স্কোয়ার রুট নিন।
x=\frac{-6±26}{8}
2 কে 4 বার গুণ করুন।
x=\frac{20}{8}
এখন সমীকরণটি সমাধান করুন x=\frac{-6±26}{8} যখন ± হল যোগ৷ 26 এ -6 যোগ করুন।
x=\frac{5}{2}
4 -কে নির্গমন ও বাতিল করার মাধ্যমে \frac{20}{8} ভগ্নাংশটি সর্বনিম্ন টার্মে কমিয়ে আনুন।
x=-\frac{32}{8}
এখন সমীকরণটি সমাধান করুন x=\frac{-6±26}{8} যখন ± হল বিয়োগ৷ -6 থেকে 26 বাদ দিন।
x=-4
-32 কে 8 দিয়ে ভাগ করুন।
4x^{2}+6x-40=4\left(x-\frac{5}{2}\right)\left(x-\left(-4\right)\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ব্যাবহার করে প্রকৃত প্ররাশিটি গুণনীয়ক করুন। x_{1} এর ক্ষেত্রে বিকল্প \frac{5}{2} ও x_{2} এর ক্ষেত্রে বিকল্প -4
4x^{2}+6x-40=4\left(x-\frac{5}{2}\right)\left(x+4\right)
p-\left(-q\right) থেকে p+q এর সমস্ত অভিব্যক্তি সহজতর৷
4x^{2}+6x-40=4\times \frac{2x-5}{2}\left(x+4\right)
কমন হর খুঁজে এবং লব বিয়োগ করার মাধ্যমে x থেকে \frac{5}{2} বিয়োগ করুন। তারপর সম্ভব হলে ভগ্নাংশটিকে ছোট টার্মে হ্রাস করুন।
4x^{2}+6x-40=2\left(2x-5\right)\left(x+4\right)
4 এবং 2 এর মধ্যে সর্বাধিক প্রচলিত ফ্যাক্টর 2 বাতিল করা হয়েছে৷