x এর জন্য সমাধান করুন
x=-\frac{1}{2}=-0.5
x = \frac{7}{2} = 3\frac{1}{2} = 3.5
গ্রাফ
শেয়ার করুন
ক্লিপবোর্ডে কপি করা হয়েছে
a+b=-12 ab=4\left(-7\right)=-28
সমীকরণটি সমাধান করতে, গোষ্ঠীভুক্ত করার মাধ্যমে বাম দিকেরটি গুণনীয়ক করুন। প্রথমত, বাম দিকেরটি 4x^{2}+ax+bx-7 হিসাবে আবার লিখতে হবে। a এবং b খুঁজতে, সমাধান করতে হবে এমন একটি সিস্টেম সেট আপ করুন।
1,-28 2,-14 4,-7
যেহেতু ab হল ঋণাত্মক, তাই a এবং b-এর একই বিপরীত প্রতীকগুলো থাকে। যেহেতু a+b হল ঋণাত্মক, তাই ধনাত্মকটির তুলনায় ঋণাত্মক সংখ্যাটির পরম মান বৃহত্তর হয়। এই জাতীয় সমস্ত জোড়া তালিকাবদ্ধ করুন যা পণ্য -28 প্রদান করে।
1-28=-27 2-14=-12 4-7=-3
প্রতিটি জোড়ার জন্য যোগফল গণনা করুন।
a=-14 b=2
সমাধানটি হল সেই জোড়া যা -12 যোগফল প্রদান করে।
\left(4x^{2}-14x\right)+\left(2x-7\right)
\left(4x^{2}-14x\right)+\left(2x-7\right) হিসেবে 4x^{2}-12x-7 পুনরায় লিখুন৷
2x\left(2x-7\right)+2x-7
4x^{2}-14x-এ 2x ফ্যাক্টর আউট করুন।
\left(2x-7\right)\left(2x+1\right)
ডিস্ট্রিবিউটিভ প্রোপার্টি ব্যবহার করে সাধারণ টার্ম 2x-7 ফ্যাক্টর আউট করুন।
x=\frac{7}{2} x=-\frac{1}{2}
সমীকরণের সমাধানগুলো খুঁজতে, 2x-7=0 এবং 2x+1=0 সমাধান করুন।
4x^{2}-12x-7=0
ফর্মের সমস্ত সমীকরণ ax^{2}+bx+c=0 দ্বিঘাত সূত্র ব্যবহার করে সমাধান করা যেতে পারে: \frac{-b±\sqrt{b^{2}-4ac}}{2a}। দ্বিঘাত সূত্র দুটি সমাধান দেয়, যখন ± যোগ করা হয় এবং যখন এটি বিয়োগ করা হয়।
x=\frac{-\left(-12\right)±\sqrt{\left(-12\right)^{2}-4\times 4\left(-7\right)}}{2\times 4}
এই সমীকরণটি আদর্শ আকারের: ax^{2}+bx+c=0। দ্বিঘাত সূত্রে a এর জন্য 4, b এর জন্য -12 এবং c এর জন্য -7 বিকল্প নিন, \frac{-b±\sqrt{b^{2}-4ac}}{2a}৷
x=\frac{-\left(-12\right)±\sqrt{144-4\times 4\left(-7\right)}}{2\times 4}
-12 এর বর্গ
x=\frac{-\left(-12\right)±\sqrt{144-16\left(-7\right)}}{2\times 4}
-4 কে 4 বার গুণ করুন।
x=\frac{-\left(-12\right)±\sqrt{144+112}}{2\times 4}
-16 কে -7 বার গুণ করুন।
x=\frac{-\left(-12\right)±\sqrt{256}}{2\times 4}
112 এ 144 যোগ করুন।
x=\frac{-\left(-12\right)±16}{2\times 4}
256 এর স্কোয়ার রুট নিন।
x=\frac{12±16}{2\times 4}
-12-এর বিপরীত হলো 12।
x=\frac{12±16}{8}
2 কে 4 বার গুণ করুন।
x=\frac{28}{8}
এখন সমীকরণটি সমাধান করুন x=\frac{12±16}{8} যখন ± হল যোগ৷ 16 এ 12 যোগ করুন।
x=\frac{7}{2}
4 -কে নির্গমন ও বাতিল করার মাধ্যমে \frac{28}{8} ভগ্নাংশটি সর্বনিম্ন টার্মে কমিয়ে আনুন।
x=-\frac{4}{8}
এখন সমীকরণটি সমাধান করুন x=\frac{12±16}{8} যখন ± হল বিয়োগ৷ 12 থেকে 16 বাদ দিন।
x=-\frac{1}{2}
4 -কে নির্গমন ও বাতিল করার মাধ্যমে \frac{-4}{8} ভগ্নাংশটি সর্বনিম্ন টার্মে কমিয়ে আনুন।
x=\frac{7}{2} x=-\frac{1}{2}
সমীকরণটি এখন সমাধান করা হয়েছে।
4x^{2}-12x-7=0
দ্বিঘাত সমীকরণ যেমন এটিকে বর্গ করে সমাধান করা যেতে পারে। বর্গ সম্পূর্ণ করতে সমীকরণটিকে অবশ্যই এইরকম হতে হবে:x^{2}+bx=c।
4x^{2}-12x-7-\left(-7\right)=-\left(-7\right)
সমীকরণের উভয় দিকে 7 যোগ করুন।
4x^{2}-12x=-\left(-7\right)
-7 কে তার থেকে বাদ দিলে 0 পড়ে থাকে।
4x^{2}-12x=7
0 থেকে -7 বাদ দিন।
\frac{4x^{2}-12x}{4}=\frac{7}{4}
4 দিয়ে উভয় দিককে ভাগ করুন।
x^{2}+\left(-\frac{12}{4}\right)x=\frac{7}{4}
4 দিয়ে ভাগ করে 4 দিয়ে গুণ করে আগের অবস্থায় আনুন।
x^{2}-3x=\frac{7}{4}
-12 কে 4 দিয়ে ভাগ করুন।
x^{2}-3x+\left(-\frac{3}{2}\right)^{2}=\frac{7}{4}+\left(-\frac{3}{2}\right)^{2}
-\frac{3}{2} পেতে x টার্মের গুণাঙ্ক -3-কে 2 দিয়ে ভাগ করুন। তারপর সমীকরণের উভয় দিকে -\frac{3}{2}-এর বর্গ যোগ করুন। এই ধাপে সমীকরণের বামদিক সম্পূর্ণ বর্গ হবে।
x^{2}-3x+\frac{9}{4}=\frac{7+9}{4}
ভগ্নাংশের লব ও হরের বর্গ করার মাধ্যমে -\frac{3}{2} এর বর্গ করুন।
x^{2}-3x+\frac{9}{4}=4
কমন হর খুঁজে এবং লব যোগ করার মাধ্যমে \frac{9}{4} এ \frac{7}{4} যোগ করুন। তারপর সম্ভব হলে ভগ্নাংশটিকে ছোট টার্মে হ্রাস করুন।
\left(x-\frac{3}{2}\right)^{2}=4
x^{2}-3x+\frac{9}{4} কে ভাঙুন। সাধারণভাবে, x^{2}+bx+c হল সম্পূর্ণ বর্গ, এটিকে এইভাবে গুণনীয়ক করা যায়: \left(x+\frac{b}{2}\right)^{2}।
\sqrt{\left(x-\frac{3}{2}\right)^{2}}=\sqrt{4}
সমীকরণের উভয় দিকে স্কোয়ার রুট ব্যবহার করুন।
x-\frac{3}{2}=2 x-\frac{3}{2}=-2
সিমপ্লিফাই।
x=\frac{7}{2} x=-\frac{1}{2}
সমীকরণের উভয় দিকে \frac{3}{2} যোগ করুন।
উদাহরণ
দ্বিঘাত সমীকরণ
{ x } ^ { 2 } - 4 x - 5 = 0
ত্রিকোণমিতি
4 \sin \theta \cos \theta = 2 \sin \theta
রৈখিক সমীকরণ
y = 3x + 4
পাটিগণিত
699 * 533
মেট্রিক্স
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
সমকালীন সমীকরণ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ডিফারেন্সিয়েশন
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ইন্টিগ্রেশন
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
লিমিট
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}