মূল বিষয়বস্তুতে এড়িয়ে যান
x এর জন্য সমাধান করুন
Tick mark Image
গ্রাফ

ওয়েব সন্ধান থেকে অনুরূপ প্রশ্নাবলী

শেয়ার করুন

16+\left(8-x\right)^{2}+\left(4+x\right)^{2}=88
2 এর ঘাতে 4 গণনা করুন এবং 16 পান।
16+64-16x+x^{2}+\left(4+x\right)^{2}=88
\left(8-x\right)^{2} প্রসারিত করতে বাইনোমিয়াল উপপাদ্য \left(a-b\right)^{2}=a^{2}-2ab+b^{2} ব্যবহার করুন৷
80-16x+x^{2}+\left(4+x\right)^{2}=88
80 পেতে 16 এবং 64 যোগ করুন।
80-16x+x^{2}+16+8x+x^{2}=88
\left(4+x\right)^{2} প্রসারিত করতে বাইনোমিয়াল উপপাদ্য \left(a+b\right)^{2}=a^{2}+2ab+b^{2} ব্যবহার করুন৷
96-16x+x^{2}+8x+x^{2}=88
96 পেতে 80 এবং 16 যোগ করুন।
96-8x+x^{2}+x^{2}=88
-8x পেতে -16x এবং 8x একত্রিত করুন।
96-8x+2x^{2}=88
2x^{2} পেতে x^{2} এবং x^{2} একত্রিত করুন।
96-8x+2x^{2}-88=0
উভয় দিক থেকে 88 বিয়োগ করুন।
8-8x+2x^{2}=0
8 পেতে 96 থেকে 88 বাদ দিন।
4-4x+x^{2}=0
2 দিয়ে উভয় দিককে ভাগ করুন।
x^{2}-4x+4=0
বহুপদটিকে স্ট্যান্ডার্ড ফর্মে দেখাতে পুনরায় সাজান। টার্ম উচ্চতর থেকে নিম্নতর পাওয়ার ক্রমে স্থাপন করুন।
a+b=-4 ab=1\times 4=4
সমীকরণটি সমাধান করতে, গোষ্ঠীভুক্ত করার মাধ্যমে বাম দিকেরটি গুণনীয়ক করুন। প্রথমত, বাম দিকেরটি x^{2}+ax+bx+4 হিসাবে আবার লিখতে হবে। a এবং b খুঁজতে, সমাধান করতে হবে এমন একটি সিস্টেম সেট আপ করুন।
-1,-4 -2,-2
যেহেতু ab হল ধনাত্মক, তাই a এবং b-এর একই প্রতীক রয়েছে। যেহেতু a+b হল ঋণাত্মক, তাই a এবং b উভয়ই ঋণাত্মক হয়। এই জাতীয় সমস্ত জোড়া তালিকাবদ্ধ করুন যা পণ্য 4 প্রদান করে।
-1-4=-5 -2-2=-4
প্রতিটি জোড়ার জন্য যোগফল গণনা করুন।
a=-2 b=-2
সমাধানটি হল সেই জোড়া যা -4 যোগফল প্রদান করে।
\left(x^{2}-2x\right)+\left(-2x+4\right)
\left(x^{2}-2x\right)+\left(-2x+4\right) হিসেবে x^{2}-4x+4 পুনরায় লিখুন৷
x\left(x-2\right)-2\left(x-2\right)
প্রথম গোষ্ঠীতে x এবং দ্বিতীয় গোষ্ঠীতে -2 ফ্যাক্টর আউট।
\left(x-2\right)\left(x-2\right)
ডিস্ট্রিবিউটিভ প্রোপার্টি ব্যবহার করে সাধারণ টার্ম x-2 ফ্যাক্টর আউট করুন।
\left(x-2\right)^{2}
দুই সংখ্যা বিশিষ্ট বর্গ আবার লিখুন।
x=2
সমীকরণের সমাধানগুলো খুঁজতে, x-2=0 সমাধান করুন।
16+\left(8-x\right)^{2}+\left(4+x\right)^{2}=88
2 এর ঘাতে 4 গণনা করুন এবং 16 পান।
16+64-16x+x^{2}+\left(4+x\right)^{2}=88
\left(8-x\right)^{2} প্রসারিত করতে বাইনোমিয়াল উপপাদ্য \left(a-b\right)^{2}=a^{2}-2ab+b^{2} ব্যবহার করুন৷
80-16x+x^{2}+\left(4+x\right)^{2}=88
80 পেতে 16 এবং 64 যোগ করুন।
80-16x+x^{2}+16+8x+x^{2}=88
\left(4+x\right)^{2} প্রসারিত করতে বাইনোমিয়াল উপপাদ্য \left(a+b\right)^{2}=a^{2}+2ab+b^{2} ব্যবহার করুন৷
96-16x+x^{2}+8x+x^{2}=88
96 পেতে 80 এবং 16 যোগ করুন।
96-8x+x^{2}+x^{2}=88
-8x পেতে -16x এবং 8x একত্রিত করুন।
96-8x+2x^{2}=88
2x^{2} পেতে x^{2} এবং x^{2} একত্রিত করুন।
96-8x+2x^{2}-88=0
উভয় দিক থেকে 88 বিয়োগ করুন।
8-8x+2x^{2}=0
8 পেতে 96 থেকে 88 বাদ দিন।
2x^{2}-8x+8=0
ফর্মের সমস্ত সমীকরণ ax^{2}+bx+c=0 দ্বিঘাত সূত্র ব্যবহার করে সমাধান করা যেতে পারে: \frac{-b±\sqrt{b^{2}-4ac}}{2a}। দ্বিঘাত সূত্র দুটি সমাধান দেয়, যখন ± যোগ করা হয় এবং যখন এটি বিয়োগ করা হয়।
x=\frac{-\left(-8\right)±\sqrt{\left(-8\right)^{2}-4\times 2\times 8}}{2\times 2}
এই সমীকরণটি আদর্শ আকারের: ax^{2}+bx+c=0। দ্বিঘাত সূত্রে a এর জন্য 2, b এর জন্য -8 এবং c এর জন্য 8 বিকল্প নিন, \frac{-b±\sqrt{b^{2}-4ac}}{2a}৷
x=\frac{-\left(-8\right)±\sqrt{64-4\times 2\times 8}}{2\times 2}
-8 এর বর্গ
x=\frac{-\left(-8\right)±\sqrt{64-8\times 8}}{2\times 2}
-4 কে 2 বার গুণ করুন।
x=\frac{-\left(-8\right)±\sqrt{64-64}}{2\times 2}
-8 কে 8 বার গুণ করুন।
x=\frac{-\left(-8\right)±\sqrt{0}}{2\times 2}
-64 এ 64 যোগ করুন।
x=-\frac{-8}{2\times 2}
0 এর স্কোয়ার রুট নিন।
x=\frac{8}{2\times 2}
-8-এর বিপরীত হলো 8।
x=\frac{8}{4}
2 কে 2 বার গুণ করুন।
x=2
8 কে 4 দিয়ে ভাগ করুন।
16+\left(8-x\right)^{2}+\left(4+x\right)^{2}=88
2 এর ঘাতে 4 গণনা করুন এবং 16 পান।
16+64-16x+x^{2}+\left(4+x\right)^{2}=88
\left(8-x\right)^{2} প্রসারিত করতে বাইনোমিয়াল উপপাদ্য \left(a-b\right)^{2}=a^{2}-2ab+b^{2} ব্যবহার করুন৷
80-16x+x^{2}+\left(4+x\right)^{2}=88
80 পেতে 16 এবং 64 যোগ করুন।
80-16x+x^{2}+16+8x+x^{2}=88
\left(4+x\right)^{2} প্রসারিত করতে বাইনোমিয়াল উপপাদ্য \left(a+b\right)^{2}=a^{2}+2ab+b^{2} ব্যবহার করুন৷
96-16x+x^{2}+8x+x^{2}=88
96 পেতে 80 এবং 16 যোগ করুন।
96-8x+x^{2}+x^{2}=88
-8x পেতে -16x এবং 8x একত্রিত করুন।
96-8x+2x^{2}=88
2x^{2} পেতে x^{2} এবং x^{2} একত্রিত করুন।
-8x+2x^{2}=88-96
উভয় দিক থেকে 96 বিয়োগ করুন।
-8x+2x^{2}=-8
-8 পেতে 88 থেকে 96 বাদ দিন।
2x^{2}-8x=-8
দ্বিঘাত সমীকরণ যেমন এটিকে বর্গ করে সমাধান করা যেতে পারে। বর্গ সম্পূর্ণ করতে সমীকরণটিকে অবশ্যই এইরকম হতে হবে:x^{2}+bx=c।
\frac{2x^{2}-8x}{2}=-\frac{8}{2}
2 দিয়ে উভয় দিককে ভাগ করুন।
x^{2}+\left(-\frac{8}{2}\right)x=-\frac{8}{2}
2 দিয়ে ভাগ করে 2 দিয়ে গুণ করে আগের অবস্থায় আনুন।
x^{2}-4x=-\frac{8}{2}
-8 কে 2 দিয়ে ভাগ করুন।
x^{2}-4x=-4
-8 কে 2 দিয়ে ভাগ করুন।
x^{2}-4x+\left(-2\right)^{2}=-4+\left(-2\right)^{2}
-2 পেতে x টার্মের গুণাঙ্ক -4-কে 2 দিয়ে ভাগ করুন। তারপর সমীকরণের উভয় দিকে -2-এর বর্গ যোগ করুন। এই ধাপে সমীকরণের বামদিক সম্পূর্ণ বর্গ হবে।
x^{2}-4x+4=-4+4
-2 এর বর্গ
x^{2}-4x+4=0
4 এ -4 যোগ করুন।
\left(x-2\right)^{2}=0
x^{2}-4x+4 কে ভাঙুন। সাধারণভাবে, x^{2}+bx+c হল সম্পূর্ণ বর্গ, এটিকে এইভাবে গুণনীয়ক করা যায়: \left(x+\frac{b}{2}\right)^{2}।
\sqrt{\left(x-2\right)^{2}}=\sqrt{0}
সমীকরণের উভয় দিকে স্কোয়ার রুট ব্যবহার করুন।
x-2=0 x-2=0
সিমপ্লিফাই।
x=2 x=2
সমীকরণের উভয় দিকে 2 যোগ করুন।
x=2
সমীকরণটি এখন সমাধান করা হয়েছে। সমীকরণগুলো একই৷