x এর জন্য সমাধান করুন (complex solution)
x=\frac{-1+\sqrt{11}i}{2}\approx -0.5+1.658312395i
x=\frac{-\sqrt{11}i-1}{2}\approx -0.5-1.658312395i
গ্রাফ
শেয়ার করুন
ক্লিপবোর্ডে কপি করা হয়েছে
3x^{2}+3x=-9
3x কে x+1 দিয়ে গুণ করতে ডিস্ট্রিবিউটিভ প্রোপার্টি ব্যবহার করুন।
3x^{2}+3x+9=0
উভয় সাইডে 9 যোগ করুন৷
x=\frac{-3±\sqrt{3^{2}-4\times 3\times 9}}{2\times 3}
এই সমীকরণটি আদর্শ আকারের: ax^{2}+bx+c=0। দ্বিঘাত সূত্রে a এর জন্য 3, b এর জন্য 3 এবং c এর জন্য 9 বিকল্প নিন, \frac{-b±\sqrt{b^{2}-4ac}}{2a}৷
x=\frac{-3±\sqrt{9-4\times 3\times 9}}{2\times 3}
3 এর বর্গ
x=\frac{-3±\sqrt{9-12\times 9}}{2\times 3}
-4 কে 3 বার গুণ করুন।
x=\frac{-3±\sqrt{9-108}}{2\times 3}
-12 কে 9 বার গুণ করুন।
x=\frac{-3±\sqrt{-99}}{2\times 3}
-108 এ 9 যোগ করুন।
x=\frac{-3±3\sqrt{11}i}{2\times 3}
-99 এর স্কোয়ার রুট নিন।
x=\frac{-3±3\sqrt{11}i}{6}
2 কে 3 বার গুণ করুন।
x=\frac{-3+3\sqrt{11}i}{6}
এখন সমীকরণটি সমাধান করুন x=\frac{-3±3\sqrt{11}i}{6} যখন ± হল যোগ৷ 3i\sqrt{11} এ -3 যোগ করুন।
x=\frac{-1+\sqrt{11}i}{2}
-3+3i\sqrt{11} কে 6 দিয়ে ভাগ করুন।
x=\frac{-3\sqrt{11}i-3}{6}
এখন সমীকরণটি সমাধান করুন x=\frac{-3±3\sqrt{11}i}{6} যখন ± হল বিয়োগ৷ -3 থেকে 3i\sqrt{11} বাদ দিন।
x=\frac{-\sqrt{11}i-1}{2}
-3-3i\sqrt{11} কে 6 দিয়ে ভাগ করুন।
x=\frac{-1+\sqrt{11}i}{2} x=\frac{-\sqrt{11}i-1}{2}
সমীকরণটি এখন সমাধান করা হয়েছে।
3x^{2}+3x=-9
3x কে x+1 দিয়ে গুণ করতে ডিস্ট্রিবিউটিভ প্রোপার্টি ব্যবহার করুন।
\frac{3x^{2}+3x}{3}=-\frac{9}{3}
3 দিয়ে উভয় দিককে ভাগ করুন।
x^{2}+\frac{3}{3}x=-\frac{9}{3}
3 দিয়ে ভাগ করে 3 দিয়ে গুণ করে আগের অবস্থায় আনুন।
x^{2}+x=-\frac{9}{3}
3 কে 3 দিয়ে ভাগ করুন।
x^{2}+x=-3
-9 কে 3 দিয়ে ভাগ করুন।
x^{2}+x+\left(\frac{1}{2}\right)^{2}=-3+\left(\frac{1}{2}\right)^{2}
\frac{1}{2} পেতে x টার্মের গুণাঙ্ক 1-কে 2 দিয়ে ভাগ করুন। তারপর সমীকরণের উভয় দিকে \frac{1}{2}-এর বর্গ যোগ করুন। এই ধাপে সমীকরণের বামদিক সম্পূর্ণ বর্গ হবে।
x^{2}+x+\frac{1}{4}=-3+\frac{1}{4}
ভগ্নাংশের লব ও হরের বর্গ করার মাধ্যমে \frac{1}{2} এর বর্গ করুন।
x^{2}+x+\frac{1}{4}=-\frac{11}{4}
\frac{1}{4} এ -3 যোগ করুন।
\left(x+\frac{1}{2}\right)^{2}=-\frac{11}{4}
x^{2}+x+\frac{1}{4} কে ভাঙুন। সাধারণভাবে, x^{2}+bx+c হল সম্পূর্ণ বর্গ, এটিকে এইভাবে গুণনীয়ক করা যায়: \left(x+\frac{b}{2}\right)^{2}।
\sqrt{\left(x+\frac{1}{2}\right)^{2}}=\sqrt{-\frac{11}{4}}
সমীকরণের উভয় দিকে স্কোয়ার রুট ব্যবহার করুন।
x+\frac{1}{2}=\frac{\sqrt{11}i}{2} x+\frac{1}{2}=-\frac{\sqrt{11}i}{2}
সিমপ্লিফাই।
x=\frac{-1+\sqrt{11}i}{2} x=\frac{-\sqrt{11}i-1}{2}
সমীকরণের উভয় দিক থেকে \frac{1}{2} বাদ দিন।
উদাহরণ
দ্বিঘাত সমীকরণ
{ x } ^ { 2 } - 4 x - 5 = 0
ত্রিকোণমিতি
4 \sin \theta \cos \theta = 2 \sin \theta
রৈখিক সমীকরণ
y = 3x + 4
পাটিগণিত
699 * 533
মেট্রিক্স
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
সমকালীন সমীকরণ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ডিফারেন্সিয়েশন
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ইন্টিগ্রেশন
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
লিমিট
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}