মূল বিষয়বস্তুতে এড়িয়ে যান
ভাঙা
Tick mark Image
মূল্যায়ন করুন
Tick mark Image
গ্রাফ

ওয়েব সন্ধান থেকে অনুরূপ প্রশ্নাবলী

শেয়ার করুন

a+b=60 ab=36\times 25=900
গোষ্ঠীভুক্ত করার মাধ্যমে অভিব্যক্তিটি গুণনীয়ক করুন। প্রথমত, অভিব্যক্তিটি 36x^{2}+ax+bx+25 হিসাবে পুনরায় লিখতে হবে। a এবং b খুঁজতে, সমাধান করতে হবে এমন একটি সিস্টেম সেট আপ করুন।
1,900 2,450 3,300 4,225 5,180 6,150 9,100 10,90 12,75 15,60 18,50 20,45 25,36 30,30
যেহেতু ab হল ধনাত্মক, তাই a এবং b-এর একই প্রতীক রয়েছে। যেহেতু a+b হল ধনাত্মক, তাই a এবং b উভয়ই ধনাত্মক হয়। এই জাতীয় সমস্ত জোড়া তালিকাবদ্ধ করুন যা পণ্য 900 প্রদান করে।
1+900=901 2+450=452 3+300=303 4+225=229 5+180=185 6+150=156 9+100=109 10+90=100 12+75=87 15+60=75 18+50=68 20+45=65 25+36=61 30+30=60
প্রতিটি জোড়ার জন্য যোগফল গণনা করুন।
a=30 b=30
সমাধানটি হল সেই জোড়া যা 60 যোগফল প্রদান করে।
\left(36x^{2}+30x\right)+\left(30x+25\right)
\left(36x^{2}+30x\right)+\left(30x+25\right) হিসেবে 36x^{2}+60x+25 পুনরায় লিখুন৷
6x\left(6x+5\right)+5\left(6x+5\right)
প্রথম গোষ্ঠীতে 6x এবং দ্বিতীয় গোষ্ঠীতে 5 ফ্যাক্টর আউট।
\left(6x+5\right)\left(6x+5\right)
ডিস্ট্রিবিউটিভ প্রোপার্টি ব্যবহার করে সাধারণ টার্ম 6x+5 ফ্যাক্টর আউট করুন।
\left(6x+5\right)^{2}
দুই সংখ্যা বিশিষ্ট বর্গ আবার লিখুন।
factor(36x^{2}+60x+25)
এই ত্রিপদ সংখ্যার ত্রিপদ স্কয়ারের রূপ আছে, সম্ভবত সাধারণ ফ্যাক্টর দ্বারা গুণ করা। ত্রিপদ স্কয়ারগুলো লিডিং ও ট্রেইলিং টার্মের স্কয়ার রুট বের করে ভাগ করা যেতে পারে।
gcf(36,60,25)=1
গুণাঙ্কগুলোর গরিষ্ঠ সাধারণ ফ্যাক্টর বের করুন।
\sqrt{36x^{2}}=6x
লিডিং টার্ম 36x^{2} এর বর্গমূল বের করুন।
\sqrt{25}=5
ট্রেইলিং টার্ম 25 এর বর্গমূল বের করুন।
\left(6x+5\right)^{2}
ত্রিপদ স্কয়ার হল দ্বিপদের স্কয়ার যা হল লিডিং ও ট্রেইলিং টার্মের যোগফল ও বিয়োগফল, এর সঙ্গে রয়েছে ত্রিপদ স্কয়ারের মাঝের টার্মের চিহ্ন দ্বারা নির্ধারিত চিহ্ন।
36x^{2}+60x+25=0
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ট্রান্সফর্মেশনটি ব্যবহার করে দ্বিঘাত বহুপদ গুণনীয়ক করা যেতে পারে, যেখানে x_{1} এবং x_{2} হলো ax^{2}+bx+c=0 দ্বিঘাত সমীকরণের সমাধান।
x=\frac{-60±\sqrt{60^{2}-4\times 36\times 25}}{2\times 36}
ফর্মের সমস্ত সমীকরণ ax^{2}+bx+c=0 দ্বিঘাত সূত্র ব্যবহার করে সমাধান করা যেতে পারে: \frac{-b±\sqrt{b^{2}-4ac}}{2a}। দ্বিঘাত সূত্র দুটি সমাধান দেয়, যখন ± যোগ করা হয় এবং যখন এটি বিয়োগ করা হয়।
x=\frac{-60±\sqrt{3600-4\times 36\times 25}}{2\times 36}
60 এর বর্গ
x=\frac{-60±\sqrt{3600-144\times 25}}{2\times 36}
-4 কে 36 বার গুণ করুন।
x=\frac{-60±\sqrt{3600-3600}}{2\times 36}
-144 কে 25 বার গুণ করুন।
x=\frac{-60±\sqrt{0}}{2\times 36}
-3600 এ 3600 যোগ করুন।
x=\frac{-60±0}{2\times 36}
0 এর স্কোয়ার রুট নিন।
x=\frac{-60±0}{72}
2 কে 36 বার গুণ করুন।
36x^{2}+60x+25=36\left(x-\left(-\frac{5}{6}\right)\right)\left(x-\left(-\frac{5}{6}\right)\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ব্যাবহার করে প্রকৃত প্ররাশিটি গুণনীয়ক করুন। x_{1} এর ক্ষেত্রে বিকল্প -\frac{5}{6} ও x_{2} এর ক্ষেত্রে বিকল্প -\frac{5}{6}
36x^{2}+60x+25=36\left(x+\frac{5}{6}\right)\left(x+\frac{5}{6}\right)
p-\left(-q\right) থেকে p+q এর সমস্ত অভিব্যক্তি সহজতর৷
36x^{2}+60x+25=36\times \frac{6x+5}{6}\left(x+\frac{5}{6}\right)
কমন হর খুঁজে এবং লব যোগ করার মাধ্যমে x এ \frac{5}{6} যোগ করুন। তারপর সম্ভব হলে ভগ্নাংশটিকে ছোট টার্মে হ্রাস করুন।
36x^{2}+60x+25=36\times \frac{6x+5}{6}\times \frac{6x+5}{6}
কমন হর খুঁজে এবং লব যোগ করার মাধ্যমে x এ \frac{5}{6} যোগ করুন। তারপর সম্ভব হলে ভগ্নাংশটিকে ছোট টার্মে হ্রাস করুন।
36x^{2}+60x+25=36\times \frac{\left(6x+5\right)\left(6x+5\right)}{6\times 6}
লবকে তার মানের সম পরিমাণ বার এবং হরকে তার মানের সম পরিমাণ বার গুণ করার মাধ্যমে \frac{6x+5}{6} কে \frac{6x+5}{6} বার গুণ করুন। তারপর সম্ভব হলে ভগ্নাংশটিকে ছোট টার্মে হ্রাস করুন।
36x^{2}+60x+25=36\times \frac{\left(6x+5\right)\left(6x+5\right)}{36}
6 কে 6 বার গুণ করুন।
36x^{2}+60x+25=\left(6x+5\right)\left(6x+5\right)
36 এবং 36 এর মধ্যে সর্বাধিক প্রচলিত ফ্যাক্টর 36 বাতিল করা হয়েছে৷