r এর জন্য সমাধান করুন
r=-13
r=5
শেয়ার করুন
ক্লিপবোর্ডে কপি করা হয়েছে
2r^{2}+16r=130
2r কে r+8 দিয়ে গুণ করতে ডিস্ট্রিবিউটিভ প্রোপার্টি ব্যবহার করুন।
2r^{2}+16r-130=0
উভয় দিক থেকে 130 বিয়োগ করুন।
r=\frac{-16±\sqrt{16^{2}-4\times 2\left(-130\right)}}{2\times 2}
এই সমীকরণটি আদর্শ আকারের: ax^{2}+bx+c=0। দ্বিঘাত সূত্রে a এর জন্য 2, b এর জন্য 16 এবং c এর জন্য -130 বিকল্প নিন, \frac{-b±\sqrt{b^{2}-4ac}}{2a}৷
r=\frac{-16±\sqrt{256-4\times 2\left(-130\right)}}{2\times 2}
16 এর বর্গ
r=\frac{-16±\sqrt{256-8\left(-130\right)}}{2\times 2}
-4 কে 2 বার গুণ করুন।
r=\frac{-16±\sqrt{256+1040}}{2\times 2}
-8 কে -130 বার গুণ করুন।
r=\frac{-16±\sqrt{1296}}{2\times 2}
1040 এ 256 যোগ করুন।
r=\frac{-16±36}{2\times 2}
1296 এর স্কোয়ার রুট নিন।
r=\frac{-16±36}{4}
2 কে 2 বার গুণ করুন।
r=\frac{20}{4}
এখন সমীকরণটি সমাধান করুন r=\frac{-16±36}{4} যখন ± হল যোগ৷ 36 এ -16 যোগ করুন।
r=5
20 কে 4 দিয়ে ভাগ করুন।
r=-\frac{52}{4}
এখন সমীকরণটি সমাধান করুন r=\frac{-16±36}{4} যখন ± হল বিয়োগ৷ -16 থেকে 36 বাদ দিন।
r=-13
-52 কে 4 দিয়ে ভাগ করুন।
r=5 r=-13
সমীকরণটি এখন সমাধান করা হয়েছে।
2r^{2}+16r=130
2r কে r+8 দিয়ে গুণ করতে ডিস্ট্রিবিউটিভ প্রোপার্টি ব্যবহার করুন।
\frac{2r^{2}+16r}{2}=\frac{130}{2}
2 দিয়ে উভয় দিককে ভাগ করুন।
r^{2}+\frac{16}{2}r=\frac{130}{2}
2 দিয়ে ভাগ করে 2 দিয়ে গুণ করে আগের অবস্থায় আনুন।
r^{2}+8r=\frac{130}{2}
16 কে 2 দিয়ে ভাগ করুন।
r^{2}+8r=65
130 কে 2 দিয়ে ভাগ করুন।
r^{2}+8r+4^{2}=65+4^{2}
4 পেতে x টার্মের গুণাঙ্ক 8-কে 2 দিয়ে ভাগ করুন। তারপর সমীকরণের উভয় দিকে 4-এর বর্গ যোগ করুন। এই ধাপে সমীকরণের বামদিক সম্পূর্ণ বর্গ হবে।
r^{2}+8r+16=65+16
4 এর বর্গ
r^{2}+8r+16=81
16 এ 65 যোগ করুন।
\left(r+4\right)^{2}=81
r^{2}+8r+16 কে ভাঙুন। সাধারণভাবে, x^{2}+bx+c হল সম্পূর্ণ বর্গ, এটিকে এইভাবে গুণনীয়ক করা যায়: \left(x+\frac{b}{2}\right)^{2}।
\sqrt{\left(r+4\right)^{2}}=\sqrt{81}
সমীকরণের উভয় দিকে স্কোয়ার রুট ব্যবহার করুন।
r+4=9 r+4=-9
সিমপ্লিফাই।
r=5 r=-13
সমীকরণের উভয় দিক থেকে 4 বাদ দিন।
উদাহরণ
দ্বিঘাত সমীকরণ
{ x } ^ { 2 } - 4 x - 5 = 0
ত্রিকোণমিতি
4 \sin \theta \cos \theta = 2 \sin \theta
রৈখিক সমীকরণ
y = 3x + 4
পাটিগণিত
699 * 533
মেট্রিক্স
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
সমকালীন সমীকরণ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ডিফারেন্সিয়েশন
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ইন্টিগ্রেশন
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
লিমিট
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}