x এর জন্য সমাধান করুন
x = \frac{\sqrt{79} + 9}{2} \approx 8.944097209
x=\frac{9-\sqrt{79}}{2}\approx 0.055902791
গ্রাফ
শেয়ার করুন
ক্লিপবোর্ডে কপি করা হয়েছে
2x^{2}-18x=-1
উভয় দিক থেকে 18x বিয়োগ করুন।
2x^{2}-18x+1=0
উভয় সাইডে 1 যোগ করুন৷
x=\frac{-\left(-18\right)±\sqrt{\left(-18\right)^{2}-4\times 2}}{2\times 2}
এই সমীকরণটি আদর্শ আকারের: ax^{2}+bx+c=0। দ্বিঘাত সূত্রে a এর জন্য 2, b এর জন্য -18 এবং c এর জন্য 1 বিকল্প নিন, \frac{-b±\sqrt{b^{2}-4ac}}{2a}৷
x=\frac{-\left(-18\right)±\sqrt{324-4\times 2}}{2\times 2}
-18 এর বর্গ
x=\frac{-\left(-18\right)±\sqrt{324-8}}{2\times 2}
-4 কে 2 বার গুণ করুন।
x=\frac{-\left(-18\right)±\sqrt{316}}{2\times 2}
-8 এ 324 যোগ করুন।
x=\frac{-\left(-18\right)±2\sqrt{79}}{2\times 2}
316 এর স্কোয়ার রুট নিন।
x=\frac{18±2\sqrt{79}}{2\times 2}
-18-এর বিপরীত হলো 18।
x=\frac{18±2\sqrt{79}}{4}
2 কে 2 বার গুণ করুন।
x=\frac{2\sqrt{79}+18}{4}
এখন সমীকরণটি সমাধান করুন x=\frac{18±2\sqrt{79}}{4} যখন ± হল যোগ৷ 2\sqrt{79} এ 18 যোগ করুন।
x=\frac{\sqrt{79}+9}{2}
18+2\sqrt{79} কে 4 দিয়ে ভাগ করুন।
x=\frac{18-2\sqrt{79}}{4}
এখন সমীকরণটি সমাধান করুন x=\frac{18±2\sqrt{79}}{4} যখন ± হল বিয়োগ৷ 18 থেকে 2\sqrt{79} বাদ দিন।
x=\frac{9-\sqrt{79}}{2}
18-2\sqrt{79} কে 4 দিয়ে ভাগ করুন।
x=\frac{\sqrt{79}+9}{2} x=\frac{9-\sqrt{79}}{2}
সমীকরণটি এখন সমাধান করা হয়েছে।
2x^{2}-18x=-1
উভয় দিক থেকে 18x বিয়োগ করুন।
\frac{2x^{2}-18x}{2}=-\frac{1}{2}
2 দিয়ে উভয় দিককে ভাগ করুন।
x^{2}+\left(-\frac{18}{2}\right)x=-\frac{1}{2}
2 দিয়ে ভাগ করে 2 দিয়ে গুণ করে আগের অবস্থায় আনুন।
x^{2}-9x=-\frac{1}{2}
-18 কে 2 দিয়ে ভাগ করুন।
x^{2}-9x+\left(-\frac{9}{2}\right)^{2}=-\frac{1}{2}+\left(-\frac{9}{2}\right)^{2}
-\frac{9}{2} পেতে x টার্মের গুণাঙ্ক -9-কে 2 দিয়ে ভাগ করুন। তারপর সমীকরণের উভয় দিকে -\frac{9}{2}-এর বর্গ যোগ করুন। এই ধাপে সমীকরণের বামদিক সম্পূর্ণ বর্গ হবে।
x^{2}-9x+\frac{81}{4}=-\frac{1}{2}+\frac{81}{4}
ভগ্নাংশের লব ও হরের বর্গ করার মাধ্যমে -\frac{9}{2} এর বর্গ করুন।
x^{2}-9x+\frac{81}{4}=\frac{79}{4}
কমন হর খুঁজে এবং লব যোগ করার মাধ্যমে \frac{81}{4} এ -\frac{1}{2} যোগ করুন। তারপর সম্ভব হলে ভগ্নাংশটিকে ছোট টার্মে হ্রাস করুন।
\left(x-\frac{9}{2}\right)^{2}=\frac{79}{4}
x^{2}-9x+\frac{81}{4} কে ভাঙুন। সাধারণভাবে, x^{2}+bx+c হল সম্পূর্ণ বর্গ, এটিকে এইভাবে গুণনীয়ক করা যায়: \left(x+\frac{b}{2}\right)^{2}।
\sqrt{\left(x-\frac{9}{2}\right)^{2}}=\sqrt{\frac{79}{4}}
সমীকরণের উভয় দিকে স্কোয়ার রুট ব্যবহার করুন।
x-\frac{9}{2}=\frac{\sqrt{79}}{2} x-\frac{9}{2}=-\frac{\sqrt{79}}{2}
সিমপ্লিফাই।
x=\frac{\sqrt{79}+9}{2} x=\frac{9-\sqrt{79}}{2}
সমীকরণের উভয় দিকে \frac{9}{2} যোগ করুন।
উদাহরণ
দ্বিঘাত সমীকরণ
{ x } ^ { 2 } - 4 x - 5 = 0
ত্রিকোণমিতি
4 \sin \theta \cos \theta = 2 \sin \theta
রৈখিক সমীকরণ
y = 3x + 4
পাটিগণিত
699 * 533
মেট্রিক্স
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
সমকালীন সমীকরণ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ডিফারেন্সিয়েশন
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ইন্টিগ্রেশন
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
লিমিট
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}