মূল বিষয়বস্তুতে এড়িয়ে যান
ভাঙা
Tick mark Image
মূল্যায়ন করুন
Tick mark Image
গ্রাফ

ওয়েব সন্ধান থেকে অনুরূপ প্রশ্নাবলী

শেয়ার করুন

3\left(-x^{2}-2x-1\right)
ফ্যাক্টর আউট 3।
a+b=-2 ab=-\left(-1\right)=1
বিবেচনা করুন -x^{2}-2x-1। গোষ্ঠীভুক্ত করার মাধ্যমে অভিব্যক্তিটি গুণনীয়ক করুন। প্রথমত, অভিব্যক্তিটি -x^{2}+ax+bx-1 হিসাবে পুনরায় লিখতে হবে। a এবং b খুঁজতে, সমাধান করতে হবে এমন একটি সিস্টেম সেট আপ করুন।
a=-1 b=-1
যেহেতু ab হল ধনাত্মক, তাই a এবং b-এর একই প্রতীক রয়েছে। যেহেতু a+b হল ঋণাত্মক, তাই a এবং b উভয়ই ঋণাত্মক হয়। কেবলমাত্র এই প্রকারের জোড়াটি হল সিস্টেম সমাধান।
\left(-x^{2}-x\right)+\left(-x-1\right)
\left(-x^{2}-x\right)+\left(-x-1\right) হিসেবে -x^{2}-2x-1 পুনরায় লিখুন৷
-x\left(x+1\right)-\left(x+1\right)
প্রথম গোষ্ঠীতে -x এবং দ্বিতীয় গোষ্ঠীতে -1 ফ্যাক্টর আউট।
\left(x+1\right)\left(-x-1\right)
ডিস্ট্রিবিউটিভ প্রোপার্টি ব্যবহার করে সাধারণ টার্ম x+1 ফ্যাক্টর আউট করুন।
3\left(x+1\right)\left(-x-1\right)
সম্পূর্ণ গুণনীয়ক অভিব্যক্তিটি আবার লিখুন।
-3x^{2}-6x-3=0
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ট্রান্সফর্মেশনটি ব্যবহার করে দ্বিঘাত বহুপদ গুণনীয়ক করা যেতে পারে, যেখানে x_{1} এবং x_{2} হলো ax^{2}+bx+c=0 দ্বিঘাত সমীকরণের সমাধান।
x=\frac{-\left(-6\right)±\sqrt{\left(-6\right)^{2}-4\left(-3\right)\left(-3\right)}}{2\left(-3\right)}
ফর্মের সমস্ত সমীকরণ ax^{2}+bx+c=0 দ্বিঘাত সূত্র ব্যবহার করে সমাধান করা যেতে পারে: \frac{-b±\sqrt{b^{2}-4ac}}{2a}। দ্বিঘাত সূত্র দুটি সমাধান দেয়, যখন ± যোগ করা হয় এবং যখন এটি বিয়োগ করা হয়।
x=\frac{-\left(-6\right)±\sqrt{36-4\left(-3\right)\left(-3\right)}}{2\left(-3\right)}
-6 এর বর্গ
x=\frac{-\left(-6\right)±\sqrt{36+12\left(-3\right)}}{2\left(-3\right)}
-4 কে -3 বার গুণ করুন।
x=\frac{-\left(-6\right)±\sqrt{36-36}}{2\left(-3\right)}
12 কে -3 বার গুণ করুন।
x=\frac{-\left(-6\right)±\sqrt{0}}{2\left(-3\right)}
-36 এ 36 যোগ করুন।
x=\frac{-\left(-6\right)±0}{2\left(-3\right)}
0 এর স্কোয়ার রুট নিন।
x=\frac{6±0}{2\left(-3\right)}
-6-এর বিপরীত হলো 6।
x=\frac{6±0}{-6}
2 কে -3 বার গুণ করুন।
-3x^{2}-6x-3=-3\left(x-\left(-1\right)\right)\left(x-\left(-1\right)\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ব্যাবহার করে প্রকৃত প্ররাশিটি গুণনীয়ক করুন। x_{1} এর ক্ষেত্রে বিকল্প -1 ও x_{2} এর ক্ষেত্রে বিকল্প -1
-3x^{2}-6x-3=-3\left(x+1\right)\left(x+1\right)
p-\left(-q\right) থেকে p+q এর সমস্ত অভিব্যক্তি সহজতর৷