মূল বিষয়বস্তুতে এড়িয়ে যান
x, y এর জন্য সমাধান করুন
Tick mark Image
গ্রাফ

ওয়েব সন্ধান থেকে অনুরূপ প্রশ্নাবলী

শেয়ার করুন

x+y=1,x-2y=14
সাবসটিট্যিশন ব্যবহার করে এক জোড়া সমীকরণ সমাধান করতে, ভেরিয়েবলগুলোর একটির জন্য একটি সমীকরণের সমাধান করুন। তারপর অন্য সমীকরণে সেই ভেরিয়েবলের জন্য ফলাফল বিপরীত করে দিন।
x+y=1
সমীকরণগুলোর মধ্যে একটি বেছে নিন এবং সমান চিহ্নের বাম দিকের x পৃথক করে x-এর জন্য সমাধান করুন।
x=-y+1
সমীকরণের উভয় দিক থেকে y বাদ দিন।
-y+1-2y=14
অন্য সমীকরণ x-2y=14 এ x এর জন্য -y+1 বিপরীত করু ন।
-3y+1=14
-2y এ -y যোগ করুন।
-3y=13
সমীকরণের উভয় দিক থেকে 1 বাদ দিন।
y=-\frac{13}{3}
-3 দিয়ে উভয় দিককে ভাগ করুন।
x=-\left(-\frac{13}{3}\right)+1
x=-y+1 এ y এর জন্য পরিবর্ত হিসাবে -\frac{13}{3} ব্যবহার করুন। কারণ ফলাফলের সমীকরণে একটি ভেরিয়েবল রয়েছে, আপনি x এর জন্য সরাসরি সমাধান করতে পারেন।
x=\frac{13}{3}+1
-1 কে -\frac{13}{3} বার গুণ করুন।
x=\frac{16}{3}
\frac{13}{3} এ 1 যোগ করুন।
x=\frac{16}{3},y=-\frac{13}{3}
সিস্টেম এখন সমাধান করা হয়েছে।
x+y=1,x-2y=14
সমীকরণগুলোকে স্ট্যান্ডার্ড আকারে রাখুন এবং সমীকরণের সিস্টেমের সমাধানের জন্য ম্যাট্রিস ব্যবহার করুন।
\left(\begin{matrix}1&1\\1&-2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\14\end{matrix}\right)
ম্যাট্রিক্স ফর্মে সমীকরণগুলো লিখুন।
inverse(\left(\begin{matrix}1&1\\1&-2\end{matrix}\right))\left(\begin{matrix}1&1\\1&-2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\1&-2\end{matrix}\right))\left(\begin{matrix}1\\14\end{matrix}\right)
\left(\begin{matrix}1&1\\1&-2\end{matrix}\right) -এর বিপরীত ম্যাট্রিক্স দ্বারা সমীকরণটির বামে গুণ করুন৷
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\1&-2\end{matrix}\right))\left(\begin{matrix}1\\14\end{matrix}\right)
একটি ম্যাট্রিক্সের গুণফল এবং এর বিপরীত হল স্বরূপ ম্যাট্রিক্স।
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\1&-2\end{matrix}\right))\left(\begin{matrix}1\\14\end{matrix}\right)
সমান চিহ্নের বাম দিকের মেট্রিক্সকে গুণ করুন।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{-2-1}&-\frac{1}{-2-1}\\-\frac{1}{-2-1}&\frac{1}{-2-1}\end{matrix}\right)\left(\begin{matrix}1\\14\end{matrix}\right)
2\times 2 ম্যাট্রিক্সের জন্য \left(\begin{matrix}a&b\\c&d\end{matrix}\right), উল্টানো ম্যাট্রিক্স হল \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), তাই ম্যাট্রিক্সের সমীকরণ ম্যাট্রিক্সের গুণের সমস্যা হিসাবে আবার লেখা যেতে পারে।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{3}&\frac{1}{3}\\\frac{1}{3}&-\frac{1}{3}\end{matrix}\right)\left(\begin{matrix}1\\14\end{matrix}\right)
পাটিগণিত করুন।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{3}+\frac{1}{3}\times 14\\\frac{1}{3}-\frac{1}{3}\times 14\end{matrix}\right)
মেট্রিক্স গুণ করুন।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{16}{3}\\-\frac{13}{3}\end{matrix}\right)
পাটিগণিত করুন।
x=\frac{16}{3},y=-\frac{13}{3}
ম্যাট্রিক্স এলিমেন্ট x এবং y বের করুন।
x+y=1,x-2y=14
এলিমিনেশন দ্বারা সমাধান করার জন্য, ভেরিয়েবলগুলোর একটির কোফিসিয়েন্টগুলো উভয় সমীকরণে একই হবে যাতে একটি সমীকরণ থেকে অন্য সমীকরণ বাদ দেওয়ার ভেরিয়েবল বাতিল না যায়।
x-x+y+2y=1-14
সমান চিহ্নের প্রতিটি পাশে টার্ম বাদ দিয়ে x+y=1 থেকে x-2y=14 বাদ দিন।
y+2y=1-14
-x এ x যোগ করুন। টার্ম x এবং -x বাতিল, শুধুমাত্র একটি ভ্যারিয়েবল সহ একটি সমীকরণ বাতিল করে দিন যা সমাধান করা যেতে পারে।
3y=1-14
2y এ y যোগ করুন।
3y=-13
-14 এ 1 যোগ করুন।
y=-\frac{13}{3}
3 দিয়ে উভয় দিককে ভাগ করুন।
x-2\left(-\frac{13}{3}\right)=14
x-2y=14 এ y এর জন্য পরিবর্ত হিসাবে -\frac{13}{3} ব্যবহার করুন। কারণ ফলাফলের সমীকরণে একটি ভেরিয়েবল রয়েছে, আপনি x এর জন্য সরাসরি সমাধান করতে পারেন।
x+\frac{26}{3}=14
-2 কে -\frac{13}{3} বার গুণ করুন।
x=\frac{16}{3}
সমীকরণের উভয় দিক থেকে \frac{26}{3} বাদ দিন।
x=\frac{16}{3},y=-\frac{13}{3}
সিস্টেম এখন সমাধান করা হয়েছে।