মূল বিষয়বস্তুতে এড়িয়ে যান
x, y এর জন্য সমাধান করুন
Tick mark Image
গ্রাফ

ওয়েব সন্ধান থেকে অনুরূপ প্রশ্নাবলী

শেয়ার করুন

x+3-y=0
প্রথম সমীকরণটির সরলীকরণ করুন। উভয় দিক থেকে y বিয়োগ করুন।
x-y=-3
উভয় দিক থেকে 3 বিয়োগ করুন। শূন্য থেকে কোনও সংখ্যাকে বিয়োগ করা যায় না৷
2y+1-x=0
দ্বিতীয় সমীকরণটি সরলীকরণ করুন। উভয় দিক থেকে x বিয়োগ করুন।
2y-x=-1
উভয় দিক থেকে 1 বিয়োগ করুন। শূন্য থেকে কোনও সংখ্যাকে বিয়োগ করা যায় না৷
x-y=-3,-x+2y=-1
সাবসটিট্যিশন ব্যবহার করে এক জোড়া সমীকরণ সমাধান করতে, ভেরিয়েবলগুলোর একটির জন্য একটি সমীকরণের সমাধান করুন। তারপর অন্য সমীকরণে সেই ভেরিয়েবলের জন্য ফলাফল বিপরীত করে দিন।
x-y=-3
সমীকরণগুলোর মধ্যে একটি বেছে নিন এবং সমান চিহ্নের বাম দিকের x পৃথক করে x-এর জন্য সমাধান করুন।
x=y-3
সমীকরণের উভয় দিকে y যোগ করুন।
-\left(y-3\right)+2y=-1
অন্য সমীকরণ -x+2y=-1 এ x এর জন্য y-3 বিপরীত করু ন।
-y+3+2y=-1
-1 কে y-3 বার গুণ করুন।
y+3=-1
2y এ -y যোগ করুন।
y=-4
সমীকরণের উভয় দিক থেকে 3 বাদ দিন।
x=-4-3
x=y-3 এ y এর জন্য পরিবর্ত হিসাবে -4 ব্যবহার করুন। কারণ ফলাফলের সমীকরণে একটি ভেরিয়েবল রয়েছে, আপনি x এর জন্য সরাসরি সমাধান করতে পারেন।
x=-7
-4 এ -3 যোগ করুন।
x=-7,y=-4
সিস্টেম এখন সমাধান করা হয়েছে।
x+3-y=0
প্রথম সমীকরণটির সরলীকরণ করুন। উভয় দিক থেকে y বিয়োগ করুন।
x-y=-3
উভয় দিক থেকে 3 বিয়োগ করুন। শূন্য থেকে কোনও সংখ্যাকে বিয়োগ করা যায় না৷
2y+1-x=0
দ্বিতীয় সমীকরণটি সরলীকরণ করুন। উভয় দিক থেকে x বিয়োগ করুন।
2y-x=-1
উভয় দিক থেকে 1 বিয়োগ করুন। শূন্য থেকে কোনও সংখ্যাকে বিয়োগ করা যায় না৷
x-y=-3,-x+2y=-1
সমীকরণগুলোকে স্ট্যান্ডার্ড আকারে রাখুন এবং সমীকরণের সিস্টেমের সমাধানের জন্য ম্যাট্রিস ব্যবহার করুন।
\left(\begin{matrix}1&-1\\-1&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-3\\-1\end{matrix}\right)
ম্যাট্রিক্স ফর্মে সমীকরণগুলো লিখুন।
inverse(\left(\begin{matrix}1&-1\\-1&2\end{matrix}\right))\left(\begin{matrix}1&-1\\-1&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\-1&2\end{matrix}\right))\left(\begin{matrix}-3\\-1\end{matrix}\right)
\left(\begin{matrix}1&-1\\-1&2\end{matrix}\right) -এর বিপরীত ম্যাট্রিক্স দ্বারা সমীকরণটির বামে গুণ করুন৷
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\-1&2\end{matrix}\right))\left(\begin{matrix}-3\\-1\end{matrix}\right)
একটি ম্যাট্রিক্সের গুণফল এবং এর বিপরীত হল স্বরূপ ম্যাট্রিক্স।
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\-1&2\end{matrix}\right))\left(\begin{matrix}-3\\-1\end{matrix}\right)
সমান চিহ্নের বাম দিকের মেট্রিক্সকে গুণ করুন।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{2-\left(-\left(-1\right)\right)}&-\frac{-1}{2-\left(-\left(-1\right)\right)}\\-\frac{-1}{2-\left(-\left(-1\right)\right)}&\frac{1}{2-\left(-\left(-1\right)\right)}\end{matrix}\right)\left(\begin{matrix}-3\\-1\end{matrix}\right)
2\times 2 ম্যাট্রিক্সের জন্য \left(\begin{matrix}a&b\\c&d\end{matrix}\right), উল্টানো ম্যাট্রিক্স হল \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), তাই ম্যাট্রিক্সের সমীকরণ ম্যাট্রিক্সের গুণের সমস্যা হিসাবে আবার লেখা যেতে পারে।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2&1\\1&1\end{matrix}\right)\left(\begin{matrix}-3\\-1\end{matrix}\right)
পাটিগণিত করুন।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2\left(-3\right)-1\\-3-1\end{matrix}\right)
মেট্রিক্স গুণ করুন।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-7\\-4\end{matrix}\right)
পাটিগণিত করুন।
x=-7,y=-4
ম্যাট্রিক্স এলিমেন্ট x এবং y বের করুন।
x+3-y=0
প্রথম সমীকরণটির সরলীকরণ করুন। উভয় দিক থেকে y বিয়োগ করুন।
x-y=-3
উভয় দিক থেকে 3 বিয়োগ করুন। শূন্য থেকে কোনও সংখ্যাকে বিয়োগ করা যায় না৷
2y+1-x=0
দ্বিতীয় সমীকরণটি সরলীকরণ করুন। উভয় দিক থেকে x বিয়োগ করুন।
2y-x=-1
উভয় দিক থেকে 1 বিয়োগ করুন। শূন্য থেকে কোনও সংখ্যাকে বিয়োগ করা যায় না৷
x-y=-3,-x+2y=-1
এলিমিনেশন দ্বারা সমাধান করার জন্য, ভেরিয়েবলগুলোর একটির কোফিসিয়েন্টগুলো উভয় সমীকরণে একই হবে যাতে একটি সমীকরণ থেকে অন্য সমীকরণ বাদ দেওয়ার ভেরিয়েবল বাতিল না যায়।
-x-\left(-y\right)=-\left(-3\right),-x+2y=-1
x এবং -x সমান করতে, প্রথম সমীকরণের প্রতিটি পাশে থাকা সমস্ত টার্মকে -1 দিয়ে গুণ করুন এবং দ্বিতীয় সমীকরণের প্রতিটি পাশে থাকা সমস্ত টার্মকে 1 দিয়ে গুণ করুন।
-x+y=3,-x+2y=-1
সিমপ্লিফাই।
-x+x+y-2y=3+1
সমান চিহ্নের প্রতিটি পাশে টার্ম বাদ দিয়ে -x+y=3 থেকে -x+2y=-1 বাদ দিন।
y-2y=3+1
x এ -x যোগ করুন। টার্ম -x এবং x বাতিল, শুধুমাত্র একটি ভ্যারিয়েবল সহ একটি সমীকরণ বাতিল করে দিন যা সমাধান করা যেতে পারে।
-y=3+1
-2y এ y যোগ করুন।
-y=4
1 এ 3 যোগ করুন।
y=-4
-1 দিয়ে উভয় দিককে ভাগ করুন।
-x+2\left(-4\right)=-1
-x+2y=-1 এ y এর জন্য পরিবর্ত হিসাবে -4 ব্যবহার করুন। কারণ ফলাফলের সমীকরণে একটি ভেরিয়েবল রয়েছে, আপনি x এর জন্য সরাসরি সমাধান করতে পারেন।
-x-8=-1
2 কে -4 বার গুণ করুন।
-x=7
সমীকরণের উভয় দিকে 8 যোগ করুন।
x=-7
-1 দিয়ে উভয় দিককে ভাগ করুন।
x=-7,y=-4
সিস্টেম এখন সমাধান করা হয়েছে।